These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 34447375)
1. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Karami Fath M; Jahangiri A; Ganji M; Sefid F; Payandeh Z; Hashemi ZS; Pourzardosht N; Hessami A; Mard-Soltani M; Zakeri A; Rahbar MR; Khalili S Front Immunol; 2021; 12():705772. PubMed ID: 34447375 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein finds additional vaccine-induced epitopes beyond those for mild infection. Garrett ME; Galloway JG; Wolf C; Logue JK; Franko N; Chu HY; Matsen FA; Overbaugh JM Elife; 2022 Jan; 11():. PubMed ID: 35072628 [TBL] [Abstract][Full Text] [Related]
3. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations. Cun Y; Li C; Shi L; Sun M; Dai S; Sun L; Shi L; Yao Y Hum Vaccin Immunother; 2021 Apr; 17(4):1097-1108. PubMed ID: 33175614 [TBL] [Abstract][Full Text] [Related]
4. T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research. Chen Z; Ruan P; Wang L; Nie X; Ma X; Tan Y J Cell Mol Med; 2021 Jan; 25(2):1274-1289. PubMed ID: 33325143 [TBL] [Abstract][Full Text] [Related]
6. Selection and T-cell antigenicity of synthetic long peptides derived from SARS-CoV-2. Piadel K; Haybatollahi A; Dalgleish AG; Smith PL J Gen Virol; 2022 Jan; 103(1):. PubMed ID: 35014605 [TBL] [Abstract][Full Text] [Related]
7. Does immune recognition of SARS-CoV2 epitopes vary between different ethnic groups? Bose T; Pant N; Pinna NK; Bhar S; Dutta A; Mande SS Virus Res; 2021 Nov; 305():198579. PubMed ID: 34560183 [TBL] [Abstract][Full Text] [Related]
8. Identification of HLA-A*24:02-Restricted CTL Candidate Epitopes Derived from the Nonstructural Polyprotein 1a of SARS-CoV-2 and Analysis of Their Conservation Using the Mutation Database of SARS-CoV-2 Variants. Takagi A; Matsui M Microbiol Spectr; 2021 Dec; 9(3):e0165921. PubMed ID: 34937174 [TBL] [Abstract][Full Text] [Related]
9. Immunoinformatic based identification of cytotoxic T lymphocyte epitopes from the Indian isolate of SARS-CoV-2. Mulpuru V; Mishra N Sci Rep; 2021 Feb; 11(1):4516. PubMed ID: 33633155 [TBL] [Abstract][Full Text] [Related]
10. The landscape of antibody binding in SARS-CoV-2 infection. Heffron AS; McIlwain SJ; Amjadi MF; Baker DA; Khullar S; Armbrust T; Halfmann PJ; Kawaoka Y; Sethi AK; Palmenberg AC; Shelef MA; O'Connor DH; Ong IM PLoS Biol; 2021 Jun; 19(6):e3001265. PubMed ID: 34143766 [TBL] [Abstract][Full Text] [Related]
11. Influence of HLA Class II Polymorphism on Predicted Cellular Immunity Against SARS-CoV-2 at the Population and Individual Level. Copley HC; Gragert L; Leach AR; Kosmoliaptsis V Front Immunol; 2021; 12():669357. PubMed ID: 34349756 [TBL] [Abstract][Full Text] [Related]
12. Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Poran A; Harjanto D; Malloy M; Arieta CM; Rothenberg DA; Lenkala D; van Buuren MM; Addona TA; Rooney MS; Srinivasan L; Gaynor RB Genome Med; 2020 Aug; 12(1):70. PubMed ID: 32791978 [TBL] [Abstract][Full Text] [Related]
13. Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Adiguzel Y Acta Trop; 2021 Sep; 221():106013. PubMed ID: 34146538 [TBL] [Abstract][Full Text] [Related]
14. Immunoinformatics and Molecular Docking Studies Predicted Potential Multiepitope-Based Peptide Vaccine and Novel Compounds against Novel SARS-CoV-2 through Virtual Screening. Waqas M; Haider A; Rehman A; Qasim M; Umar A; Sufyan M; Akram HN; Mir A; Razzaq R; Rasool D; Tahir RA; Sehgal SA Biomed Res Int; 2021; 2021():1596834. PubMed ID: 33728324 [TBL] [Abstract][Full Text] [Related]
15. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Crooke SN; Ovsyannikova IG; Kennedy RB; Poland GA Sci Rep; 2020 Aug; 10(1):14179. PubMed ID: 32843695 [TBL] [Abstract][Full Text] [Related]
16. A Proteome-Wide Immunoinformatics Tool to Accelerate T-Cell Epitope Discovery and Vaccine Design in the Context of Emerging Infectious Diseases: An Ethnicity-Oriented Approach. Oyarzun P; Kashyap M; Fica V; Salas-Burgos A; Gonzalez-Galarza FF; McCabe A; Jones AR; Middleton D; Kobe B Front Immunol; 2021; 12():598778. PubMed ID: 33717077 [TBL] [Abstract][Full Text] [Related]
17. Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Alam A; Khan A; Imam N; Siddiqui MF; Waseem M; Malik MZ; Ishrat R Brief Bioinform; 2021 Mar; 22(2):1309-1323. PubMed ID: 33285567 [TBL] [Abstract][Full Text] [Related]
18. A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2. Jahangirian E; Jamal GA; Nouroozi M; Mohammadpour A Immunogenetics; 2021 Dec; 73(6):459-477. PubMed ID: 34542663 [TBL] [Abstract][Full Text] [Related]
19. Molecular mimicry of SARS-COV-2 antigens as a possible natural anti-cancer preventive immunization. Ragone C; Mauriello A; Cavalluzzo B; Cavalcanti E; Russo L; Manolio C; Mangano S; Cembrola B; Tagliamonte M; Buonaguro L Front Immunol; 2024; 15():1398002. PubMed ID: 38947322 [TBL] [Abstract][Full Text] [Related]