These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34447413)

  • 1. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
    Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y
    Front Genet; 2021; 12():708981. PubMed ID: 34447413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMNN: batch effect correction for single-cell RNA-seq data via supervised mutual nearest neighbor detection.
    Yang Y; Li G; Qian H; Wilhelmsen KC; Shen Y; Li Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics.
    Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M
    Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A benchmark of batch-effect correction methods for single-cell RNA sequencing data.
    Tran HTN; Ang KS; Chevrier M; Zhang X; Lee NYS; Goh M; Chen J
    Genome Biol; 2020 Jan; 21(1):12. PubMed ID: 31948481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
    Haghverdi L; Lun ATL; Morgan MD; Marioni JC
    Nat Biotechnol; 2018 Jun; 36(5):421-427. PubMed ID: 29608177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K-nearest-neighbors induced topological PCA for single cell RNA-sequence data analysis.
    Cottrell S; Hozumi Y; Wei GW
    Comput Biol Med; 2024 Jun; 175():108497. PubMed ID: 38678944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BATMAN: Fast and Accurate Integration of Single-Cell RNA-Seq Datasets via Minimum-Weight Matching.
    Mandric I; Hill BL; Freund MK; Thompson M; Halperin E
    iScience; 2020 Jun; 23(6):101185. PubMed ID: 32504875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch correction of single-cell sequencing data via an autoencoder architecture.
    Danino R; Nachman I; Sharan R
    Bioinform Adv; 2024; 4(1):vbad186. PubMed ID: 38213820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch alignment of single-cell transcriptomics data using deep metric learning.
    Yu X; Xu X; Zhang J; Li X
    Nat Commun; 2023 Feb; 14(1):960. PubMed ID: 36810607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K-Nearest-Neighbors Induced Topological PCA for Single Cell RNA-Sequence Data Analysis.
    Cottrell S; Hozumi Y; Wei GW
    ArXiv; 2023 Oct; ():. PubMed ID: 37961744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq.
    Yu W; Mahfouz A; Reinders MJT
    Front Genet; 2021; 12():644211. PubMed ID: 33927748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data.
    Qin L; Zhang G; Zhang S; Chen Y
    Adv Sci (Weinh); 2024 Aug; 11(29):e2308934. PubMed ID: 38778573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating single-cell RNA-seq datasets with substantial batch effects.
    Hrovatin K; Moinfar AA; Zappia L; Lapuerta AT; Lengerich B; Kellis M; Theis FJ
    bioRxiv; 2024 Feb; ():. PubMed ID: 37961672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders.
    Wang X; Zhang C; Wang L; Zheng P
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGAMNN: Graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors.
    Zhang B; Wu H; Wang Y; Xuan C; Gao J
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5665-5674. PubMed ID: 37656653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.