These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34447450)

  • 1. Benzylidene-6-hydroxy-3,4-dihydronaphthalenone chalconoids as potent tyrosinase inhibitors.
    Ranjbar S; Kamarei MM; Khoshneviszadeh M; Hosseinpoor H; Edraki N; Khoshneviszadeh M
    Res Pharm Sci; 2021 Aug; 16(4):425-435. PubMed ID: 34447450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological evaluation of substituted aurone derivatives as potential tyrosinase inhibitors:
    Alshaye NA; Mughal EU; Elkaeed EB; Ashraf Z; Kehili S; Nazir Y; Naeem N; Abdul Majeed N; Sadiq A
    J Biomol Struct Dyn; 2023; 41(17):8307-8322. PubMed ID: 36255179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies.
    Ashraf Z; Rafiq M; Nadeem H; Hassan M; Afzal S; Waseem M; Afzal K; Latip J
    PLoS One; 2017; 12(5):e0178069. PubMed ID: 28542395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers.
    Dehghani Z; Khoshneviszadeh M; Khoshneviszadeh M; Ranjbar S
    Bioorg Med Chem; 2019 Jun; 27(12):2644-2651. PubMed ID: 31000406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of (Z)-2-benzylidene-dihydroimidazothiazolone derivatives as tyrosinase inhibitors: Anti-melanogenic effects and
    Choi H; Young Ryu I; Choi I; Ullah S; Jin Jung H; Park Y; Hwang Y; Jeong Y; Hong S; Chun P; Young Chung H; Ryong Moon H
    Comput Struct Biotechnol J; 2022; 20():899-912. PubMed ID: 35242283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors.
    Channar PA; Saeed A; Larik FA; Rafiq M; Ashraf Z; Jabeen F; Fattah TA
    Bioorg Med Chem; 2017 Nov; 25(21):5929-5938. PubMed ID: 28988751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors.
    Sheng Z; Ge S; Xu X; Zhang Y; Wu P; Zhang K; Xu X; Li C; Zhao D; Tang X
    Medchemcomm; 2018 May; 9(5):853-861. PubMed ID: 30108974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel morpholine containing cinnamoyl amides as potent tyrosinase inhibitors.
    Ghafary S; Ranjbar S; Larijani B; Amini M; Biglar M; Mahdavi M; Bakhshaei M; Khoshneviszadeh M; Sakhteman A; Khoshneviszadeh M
    Int J Biol Macromol; 2019 Aug; 135():978-985. PubMed ID: 31150673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase.
    Ashraf Z; Rafiq M; Seo SY; Kwon KS; Babar MM; Zaidi NU
    Eur J Med Chem; 2015 Jun; 98():203-11. PubMed ID: 26025140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives.
    Karakaya G; Türe A; Ercan A; Öncül S; Aytemir MD
    Bioorg Chem; 2019 Jul; 88():102950. PubMed ID: 31075740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.
    Ashraf Z; Rafiq M; Seo SY; Babar MM; Zaidi NU
    Bioorg Med Chem; 2015 Sep; 23(17):5870-80. PubMed ID: 26204890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based designing and synthesis of 2-phenylchromone derivatives as potent tyrosinase inhibitors: In vitro and in silico studies.
    Ashraf J; Mughal EU; Alsantali RI; Obaid RJ; Sadiq A; Naeem N; Ali A; Massadaq A; Javed Q; Javid A; Sumrra SH; Zafar MN; Ahmed SA
    Bioorg Med Chem; 2021 Apr; 35():116057. PubMed ID: 33610011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase.
    Saeed A; Mahesar PA; Channar PA; Abbas Q; Larik FA; Hassan M; Raza H; Seo SY
    Bioorg Chem; 2017 Oct; 74():187-196. PubMed ID: 28837887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, in vitro and in silico studies of novel Schiff base derivatives of 2-hydroxy-4-methoxybenzamide as tyrosinase inhibitors.
    Iraji A; Panahi Z; Edraki N; Khoshneviszadeh M; Khoshneviszadeh M
    Drug Dev Res; 2021 Jun; 82(4):533-542. PubMed ID: 33340117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based Design, Synthesis, Biological Evaluation and Molecular Docking Study of 4-Hydroxy-N'-methylenebenzohydrazide Derivatives Acting as Tyrosinase Inhibitors with Potentiate Anti-Melanogenesis Activities.
    Iraji A; Khoshneviszadeh M; Bakhshizadeh P; Edraki N; Khoshneviszadeh M
    Med Chem; 2020; 16(7):892-902. PubMed ID: 31339074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers.
    Larik FA; Saeed A; Channar PA; Muqadar U; Abbas Q; Hassan M; Seo SY; Bolte M
    Eur J Med Chem; 2017 Dec; 141():273-281. PubMed ID: 29040952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors.
    Radhakrishnan S; Shimmon R; Conn C; Baker A
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4085-91. PubMed ID: 26318997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro anti-melanogenic effects of chimeric compounds, 2-(substituted benzylidene)-1,3-indanedione derivatives with a β-phenyl-α, β -unsaturated dicarbonyl scaffold.
    Ryu IY; Choi I; Jung HJ; Ullah S; Choi H; Al-Amin M; Chun P; Moon HR
    Bioorg Chem; 2021 Apr; 109():104688. PubMed ID: 33582586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (
    Jung HJ; Noh SG; Ryu IY; Park C; Lee JY; Chun P; Moon HR; Chung HY
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33233397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells.
    Radhakrishnan S; Shimmon R; Conn C; Baker A
    Bioorg Chem; 2015 Oct; 62():117-23. PubMed ID: 26333206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.