BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34447562)

  • 1. Non-metal with metal behavior: metal-free coordination-insertion ring-opening polymerization.
    Wang X; Xu J; Li Z; Liu J; Sun J; Hadjichristidis N; Guo K
    Chem Sci; 2021 Aug; 12(32):10732-10741. PubMed ID: 34447562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unprecedented polymerization of trimethylene carbonate initiated by a samarium borohydride complex: mechanistic insights and copolymerization with epsilon-caprolactone.
    Palard I; Schappacher M; Belloncle B; Soum A; Guillaume SM
    Chemistry; 2007; 13(5):1511-21. PubMed ID: 17099916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of ε-Caprolactone to a Cationic Niobium(V) Alkoxide Complex: Fundamental Insight into Ring-Opening Polymerization via Coordination-Insertion.
    Buchard A; Davidson MG; Gobius du Sart G; Jones MD; Kociok-Köhn G; McCormick SN; Mckeown P
    Inorg Chem; 2023 Sep; 62(38):15688-15699. PubMed ID: 37695575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-Opening Polymerization of Trimethylene Carbonate with Phosphazene Organocatalyst.
    Zhu J; Luo X; Li X
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organocatalytic Ring-Opening Polymerization of
    Cheechana N; Benchaphanthawee W; Akkravijitkul N; Rithchumpon P; Junpirom T; Limwanich W; Punyodom W; Kungwan N; Ngaojampa C; Thavornyutikarn P; Meepowpan P
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heteroleptic tin(II) initiators for the ring-opening (co)polymerization of lactide and trimethylene carbonate: mechanistic insights from experiments and computations.
    Wang L; Kefalidis CE; Sinbandhit S; Dorcet V; Carpentier JF; Maron L; Sarazin Y
    Chemistry; 2013 Sep; 19(40):13463-78. PubMed ID: 23955851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented polymerization of epsilon-Caprolactone initiated by a single-site lanthanide borohydride complex, [Sm(eta-C5Me5)2(BH4)(thf)]: mechanistic insights.
    Palard I; Soum A; Guillaume SM
    Chemistry; 2004 Aug; 10(16):4054-62. PubMed ID: 15317053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus pentoxide as a cost-effective, metal-free catalyst for ring opening polymerization of ε-caprolactone.
    Adoumaz I; Boutriouia EH; Beniazza R; Qayouh H; El Kadib A; Khoukh A; Save M; Lahcini M
    RSC Adv; 2020 Jun; 10(39):23498-23502. PubMed ID: 35520329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate.
    Fliedel C; Rosa V; Alves FM; Martins AM; Avilés T; Dagorne S
    Dalton Trans; 2015 Jul; 44(27):12376-87. PubMed ID: 25847079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigation on the mechanism and kinetics of the ring-opening polymerization of ε-caprolactone initiated by tin(II) alkoxides.
    Sattayanon C; Kungwan N; Punyodom W; Meepowpan P; Jungsuttiwong S
    J Mol Model; 2013 Dec; 19(12):5377-85. PubMed ID: 24173613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete divalent rare-earth cationic ROP catalysts: ligand-dependent redox behavior and discrepancies with alkaline-earth analogues in a ligand-assisted activated monomer mechanism.
    Liu B; Roisnel T; Maron L; Carpentier JF; Sarazin Y
    Chemistry; 2013 Mar; 19(12):3986-94. PubMed ID: 23386504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low valent Al(ii)-Al(ii) catalysts as highly active ε-caprolactone polymerization catalysts: indication of metal cooperativity through DFT studies.
    Kazarina OV; Gourlaouen C; Karmazin L; Morozov AG; Fedushkin IL; Dagorne S
    Dalton Trans; 2018 Oct; 47(39):13800-13808. PubMed ID: 30106082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Living/controlled ring-opening (co)polymerization of lactones by Al-based catalysts with different sidearms.
    Zhao W; Wang Q; Cui Y; He J; Zhang Y
    Dalton Trans; 2019 May; 48(21):7167-7178. PubMed ID: 30500019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic study of Bu2SnCl2-mediated ring-opening polymerization of epsilon-caprolactone by multinuclear NMR spectroscopy.
    Deshayes G; Mercier FA; Degée P; Verbruggen I; Biesemans M; Willem R; Dubois P
    Chemistry; 2003 Sep; 9(18):4346-52. PubMed ID: 14502620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Polarized Alkenes as Organocatalysts for the Polymerization of Lactones and Trimethylene Carbonate.
    Naumann S; Thomas AW; Dove AP
    ACS Macro Lett; 2016 Jan; 5(1):134-138. PubMed ID: 35668587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring-opening bulk polymerization of epsilon-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435.
    Deng F; Gross RA
    Int J Biol Macromol; 1999; 25(1-3):153-9. PubMed ID: 10416662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Block Copolymers of Varying Architecture Through Suppression of Transesterification during Coordinated Anionic Ring Opening Polymerization.
    Lipik VT; Abadie MJ
    Int J Biomater; 2012; 2012():390947. PubMed ID: 22844286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring-opening polymerization of
    Punyodom W; Limwanich W; Meepowpan P; Thapsukhon B
    Des Monomers Polym; 2021 Apr; 24(1):89-97. PubMed ID: 33889054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Tufano F; Napolitano C; Mazzeo M; Grisi F; Lamberti M
    Biomacromolecules; 2024 Jun; ():. PubMed ID: 38916862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes.
    Darensbourg DJ; Karroonnirun O; Wilson SJ
    Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.