These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34447631)

  • 1. Herbivory and misidentification of target habitat constrain region-wide restoration success of spekboom (
    van der Vyver ML; Mills AJ; Difford M; Cowling RM
    PeerJ; 2021; 9():e11944. PubMed ID: 34447631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biome-wide experiment to assess the effects of propagule size and treatment on the survival of Portulacaria afra (spekboom) truncheons planted to restore degraded subtropical thicket of South Africa.
    van der Vyver ML; Mills AJ; Cowling RM
    PLoS One; 2021; 16(4):e0250256. PubMed ID: 33886643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site selection for subtropical thicket restoration: mapping cold-air pooling in the South African sub-escarpment lowlands.
    Duker R; Cowling RM; van der Vyver ML; Potts AJ
    PeerJ; 2020; 8():e8980. PubMed ID: 32351786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring South African subtropical succulent thicket using
    Galuszynski NC; Forbes RE; Rishworth GM; Potts AJ
    PeerJ; 2023; 11():e15538. PubMed ID: 37601260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration dynamics of
    Galuszynski NC
    PeerJ; 2023; 11():e15081. PubMed ID: 37151286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoring South African subtropical succulent thicket using
    Potts AJ; Duker R; Hunt KL; Tempel A; Galuszynski NC
    PeerJ; 2024; 12():e17471. PubMed ID: 38952986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The soil microbiomics of intact, degraded and partially-restored semi-arid succulent thicket (Albany Subtropical Thicket).
    Schagen M; Bosch J; Johnson J; Duker R; Lebre P; Potts AJ; Cowan DA
    PeerJ; 2021; 9():e12176. PubMed ID: 34707927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated mapping of
    Galuszynski NC; Duker R; Potts AJ; Kattenborn T
    PeerJ; 2022; 10():e14219. PubMed ID: 36262418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crassulacean acid metabolism as a continuous trait: variability in the contribution of Crassulacean acid metabolism (CAM) in populations of
    Guralnick LJ; Gladsky K
    Heliyon; 2017 Apr; 3(4):e00293. PubMed ID: 28443322
    [No Abstract]   [Full Text] [Related]  

  • 10. Carbon sequestration in riparian forests: A global synthesis and meta-analysis.
    Dybala KE; Matzek V; Gardali T; Seavy NE
    Glob Chang Biol; 2019 Jan; 25(1):57-67. PubMed ID: 30411449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vegetation of Holocene coastal dunes of the Cape south coast, South Africa.
    Cowling RM; Cawthra H; Privett S; Grobler BA
    PeerJ; 2023; 11():e16427. PubMed ID: 38107568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests.
    Wang S; Huang Y
    Glob Chang Biol; 2020 May; 26(5):3163-3173. PubMed ID: 32048403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolved carbon fluxes in a vegetation restoration area of an eroding landscape.
    Li J; Liu S; Fu B; Wang J
    Water Res; 2019 Apr; 152():106-116. PubMed ID: 30665157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expert-derived monitoring thresholds for impacts of megaherbivores on vegetation cover in a protected area.
    Smit IP; Landman M; Cowling RM; Gaylard A
    J Environ Manage; 2016 Jul; 177():298-305. PubMed ID: 27107956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agricultural legacy, climate, and soil influence the restoration and carbon potential of woody regrowth in Australia.
    Dwyer JM; Fensham RJ; Buckley YM
    Ecol Appl; 2010 Oct; 20(7):1838-50. PubMed ID: 21049873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades.
    Cunningham SC; Cavagnaro TR; Mac Nally R; Paul KI; Baker PJ; Beringer J; Thomson JR; Thompson RM
    Glob Chang Biol; 2015 Apr; 21(4):1552-66. PubMed ID: 25230693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive long-term impacts of restoration on soils in an experimental urban forest.
    Ward EB; Doroski DA; Felson AJ; Hallett RA; Oldfield EE; Kuebbing SE; Bradford MA
    Ecol Appl; 2021 Jul; 31(5):e02336. PubMed ID: 33783049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.
    Nie X; Li Z; Huang J; Huang B; Xiao H; Zeng G
    Environ Manage; 2017 May; 59(5):816-825. PubMed ID: 28078391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exclosures improve degraded landscapes in the sub-humid Ethiopian Highlands: the Ferenj Wuha watershed.
    Adem AA; Mekuria W; Belay Y; Tilahun SA; Steenhuis TS
    J Environ Manage; 2020 Sep; 270():110802. PubMed ID: 32501234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Diurnal and Seasonal Dynamic Variation of Soil Respiration and Its Influencing Factors of Different Fenced Enclosure Years in Desert Steppec].
    Cui H; Zhang YH
    Huan Jing Ke Xue; 2016 Apr; 37(4):1507-15. PubMed ID: 27548976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.