These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34447742)

  • 21. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen-dependent current generation and energy conservation by Shewanella oneidensis MR-1 in bioelectrochemical systems.
    Hirose A; Kouzuma A; Watanabe K
    J Biosci Bioeng; 2021 Jan; 131(1):27-32. PubMed ID: 32958393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106.
    Zhou Y; Lu H; Wang J; Zhou J; Leng X; Liu G
    J Hazard Mater; 2018 Aug; 356():82-90. PubMed ID: 29843113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mediation of Extracellular Polymeric Substances in Microbial Reduction of Hematite by
    Gao L; Lu X; Liu H; Li J; Li W; Song R; Wang R; Zhang D; Zhu J
    Front Microbiol; 2019; 10():575. PubMed ID: 30984128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli.
    Feng J; Jiang M; Li K; Lu Q; Xu S; Wang X; Chen K; Ouyang P
    Bioelectrochemistry; 2020 Aug; 134():107498. PubMed ID: 32179454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level.
    Cheng ZH; Xiong JR; Min D; Cheng L; Liu DF; Li WW; Jin F; Yang M; Yu HQ
    Biotechnol Bioeng; 2020 May; 117(5):1294-1303. PubMed ID: 32048726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversing an Extracellular Electron Transfer Pathway for Electrode-Driven Acetoin Reduction.
    Tefft NM; TerAvest MA
    ACS Synth Biol; 2019 Jul; 8(7):1590-1600. PubMed ID: 31243980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quinone-modified NH
    Li X; Guo W; Liu Z; Wang R; Liu H
    J Hazard Mater; 2017 Feb; 324(Pt B):665-672. PubMed ID: 27876243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Bioelectrochemistry; 2018 Feb; 119():172-179. PubMed ID: 29032328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation.
    Xue Q; Chen Z; Xie W; Zhang S; Jiang J; Sun G
    Molecules; 2024 May; 29(10):. PubMed ID: 38792137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promoting Extracellular Electron Transfer of
    Sun W; Lin Z; Yu Q; Cheng S; Gao H
    Front Microbiol; 2021; 12():727709. PubMed ID: 34675900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.
    Kouzuma A; Ishii S; Watanabe K
    Bioresour Technol; 2018 May; 255():302-307. PubMed ID: 29426790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1.
    Wang YP; Yu SS; Zhang HL; Li WW; Cheng YY; Yu HQ
    Sci Rep; 2015 Jan; 5():7991. PubMed ID: 25612888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells.
    Kouzuma A; Kasai T; Hirose A; Watanabe K
    Front Microbiol; 2015; 6():609. PubMed ID: 26136738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.