These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34447798)
1. Reduction of Energy Intensity in Broiler Facilities: Methodology and Strategies. Baxevanou C; Fidaros D; Giannenas I; Bonos E; Skoufos I Front Vet Sci; 2021; 8():671183. PubMed ID: 34447798 [TBL] [Abstract][Full Text] [Related]
2. Performance analysis of photovoltaic-thermal air collectors combined with a water to air heat exchanger for renewed air conditioning in building. Hachchadi O; Bououd M; Mechaqrane A Environ Sci Pollut Res Int; 2021 Apr; 28(15):18953-18962. PubMed ID: 32080816 [TBL] [Abstract][Full Text] [Related]
3. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings. Petersdorff C; Boermans T; Harnisch J Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030 [TBL] [Abstract][Full Text] [Related]
4. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility. Payne WV ASHRAE Winter Conf Pap; 2016 Jan; 2016(Winter Conference):. PubMed ID: 28729740 [TBL] [Abstract][Full Text] [Related]
5. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran-a case study of Alborz province. Pishgar-Komleh SH; Akram A; Keyhani A; van Zelm R Environ Sci Pollut Res Int; 2017 Jul; 24(19):16041-16049. PubMed ID: 28537021 [TBL] [Abstract][Full Text] [Related]
6. Energy Use Consequences of Ventilating a Net-Zero Energy House. Ng LC; Payne WV Appl Therm Eng; 2016 Mar; 96():151-160. PubMed ID: 26903776 [TBL] [Abstract][Full Text] [Related]
7. Field study on effects of a heat exchanger on broiler performance, energy use, and calculated carbon dioxide emission at commercial broiler farms, and the experiences of farmers using a heat exchanger. Bokkers EA; van Zanten HH; van den Brand H Poult Sci; 2010 Dec; 89(12):2743-50. PubMed ID: 21076115 [TBL] [Abstract][Full Text] [Related]
8. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility. Fanney AH; Healy W; Payne V; Kneifel J; Ng L; Dougherty B; Ullah T; Omar F J Sol Energy Eng; 2017 Dec; 139(6):. PubMed ID: 29581649 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Bacenetti J; Negri M; Fiala M; González-García S Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800 [TBL] [Abstract][Full Text] [Related]
10. Residential Net-Zero Energy Buildings: Review and Perspective. Wu W; Skye HM Renew Sustain Energy Rev; 2021 May; 142():. PubMed ID: 34413697 [TBL] [Abstract][Full Text] [Related]
11. A New Approach to the Improvement of Energy Efficiency in Radiology Practices. Klein HM Rofo; 2023 May; 195(5):416-425. PubMed ID: 36928520 [TBL] [Abstract][Full Text] [Related]
12. Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways. Usack JG; Van Doren LG; Posmanik R; Tester JW; Angenent LT J Dairy Sci; 2019 Apr; 102(4):3630-3645. PubMed ID: 30712928 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis. Kabeel AE; Abdelgaied M; Sathyamurthy R; Kabeel A Environ Sci Pollut Res Int; 2021 Feb; 28(7):7955-7980. PubMed ID: 33047264 [TBL] [Abstract][Full Text] [Related]
14. Multi-Objective Optimization and Performance Assessments of an Integrated Energy System Based on Fuel, Wind and Solar Energies. Li J; Zhao H Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33917645 [TBL] [Abstract][Full Text] [Related]
15. Performance analysis of a hybrid ventilation system in a near zero energy building. Rey-Hernández JM; San José-Alonso JF; Velasco-Gómez E; Yousif C; Rey-Martínez FJ Build Environ; 2020 Nov; 185():107265. PubMed ID: 32939104 [TBL] [Abstract][Full Text] [Related]
16. The carbon footprint of integrated milk production and renewable energy systems - A case study. Vida E; Tedesco DEA Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397 [TBL] [Abstract][Full Text] [Related]
17. Mathematical Modeling and Analysis of Distributed Energy Systems for a Refinery in Kuwait. Alhajri IH; Taqvi S ACS Omega; 2021 Aug; 6(30):19778-19788. PubMed ID: 34368565 [TBL] [Abstract][Full Text] [Related]
18. Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review. Koželj R; Osterman E; Leonforte F; Del Pero C; Miglioli A; Zavrl E; Stropnik R; Aste N; Stritih U Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635169 [TBL] [Abstract][Full Text] [Related]
19. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan. Kuo YM; Fukushima Y J Air Waste Manag Assoc; 2009 Mar; 59(3):360-72. PubMed ID: 19320274 [TBL] [Abstract][Full Text] [Related]
20. A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. Lee H; Zhao X; Seo J Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33806602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]