These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34448145)
1. Using the backward probability method in contaminant source identification with a finite-duration source loading in a river. Khoshgou H; Neyshabouri SAAS Environ Sci Pollut Res Int; 2022 Jan; 29(4):6306-6316. PubMed ID: 34448145 [TBL] [Abstract][Full Text] [Related]
2. Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Ghane A; Mazaheri M; Mohammad Vali Samani J J Environ Manage; 2016 Sep; 180():164-71. PubMed ID: 27219462 [TBL] [Abstract][Full Text] [Related]
3. New approach for point pollution source identification in rivers based on the backward probability method. Wang J; Zhao J; Lei X; Wang H Environ Pollut; 2018 Oct; 241():759-774. PubMed ID: 29908500 [TBL] [Abstract][Full Text] [Related]
4. A DiffeRential Evolution Adaptive Metropolis (DREAM)-based inverse model for continuous release source identification in river pollution incidents: Quantitative evaluation and sensitivity analysis. Zhu Y; Cao H; Gao Z; Chen Z Environ Pollut; 2024 Apr; 347():123448. PubMed ID: 38309421 [TBL] [Abstract][Full Text] [Related]
5. Inverse identification of pollution source release information for surface river chemical spills using a hybrid optimization model. Jiang D; Zhu H; Wang P; Liu J; Zhang F; Chen Y J Environ Manage; 2021 Sep; 294():113022. PubMed ID: 34119995 [TBL] [Abstract][Full Text] [Related]
6. Inverse estimation of finite-duration source release mass in river pollution accidents based on adjoint equation method. Jing P; Yang Z; Zhou W; Huai W; Lu X Environ Sci Pollut Res Int; 2020 May; 27(13):14679-14689. PubMed ID: 32052326 [TBL] [Abstract][Full Text] [Related]
7. Development of a DREAM-based inverse model for multi-point source identification in river pollution incidents: Model testing and uncertainty analysis. Zhu Y; Chen Z J Environ Manage; 2022 Dec; 324():116375. PubMed ID: 36191500 [TBL] [Abstract][Full Text] [Related]
8. Release process identification of non-instantaneous point source pollution in rivers via reverse flow and pollution routing. Wang J; Zhao J; Lei X; Zhao T; Wang H Environ Res; 2022 Oct; 213():113704. PubMed ID: 35716818 [TBL] [Abstract][Full Text] [Related]
9. Introducing a general framework for pollution source identification in surface water resources (theory and application). Amiri S; Mazaheri M; Mohammad Vali Samani J J Environ Manage; 2019 Oct; 248():109281. PubMed ID: 31351407 [TBL] [Abstract][Full Text] [Related]
10. General Backward Model to Identify the Source for Contaminants Undergoing Non-Fickian Diffusion in Water. Zhang Y; Brusseau ML; Neupauer RM; Wei W Environ Sci Technol; 2022 Aug; 56(15):10743-10753. PubMed ID: 35875912 [TBL] [Abstract][Full Text] [Related]
11. Optimal monitoring locations for identification of ambivalent characteristics of groundwater pollution sources. Chakraborty A; Prakash O Environ Monit Assess; 2022 Aug; 194(9):664. PubMed ID: 35951152 [TBL] [Abstract][Full Text] [Related]
12. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis. Zhu Y; Chen Z; Asif Z Environ Pollut; 2021 Sep; 285():117497. PubMed ID: 34380214 [TBL] [Abstract][Full Text] [Related]
13. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential. Yu S; Yun ST; Hwang SI; Chae G Environ Sci Pollut Res Int; 2019 Jul; 26(21):21216-21238. PubMed ID: 31115822 [TBL] [Abstract][Full Text] [Related]
14. Release estimation of pollutants in river by the variational analysis approach. Pingfei J; Zhonghua Y; Wei Y; Song Z; Fengpeng B J Contam Hydrol; 2022 Jun; 248():103999. PubMed ID: 35338977 [TBL] [Abstract][Full Text] [Related]
15. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances. Yu S; Hwang SI; Yun ST; Chae G; Lee D; Kim KE Environ Sci Pollut Res Int; 2017 Nov; 24(32):24816-24843. PubMed ID: 28913678 [TBL] [Abstract][Full Text] [Related]
16. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
17. Occurrence and temporal variations of TMDD in the river Rhine, Germany. Guedez AA; Frömmel S; Diehl P; Püttmann W Environ Sci Pollut Res Int; 2010 Feb; 17(2):321-30. PubMed ID: 19526261 [TBL] [Abstract][Full Text] [Related]
18. Crucial time of emergency monitoring for reliable numerical pollution source identification. Yang R; Jiang J; Pang T; Yang Z; Han F; Li H; Wang H; Zheng Y Water Res; 2024 Nov; 265():122303. PubMed ID: 39216261 [TBL] [Abstract][Full Text] [Related]
19. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania. Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960 [TBL] [Abstract][Full Text] [Related]
20. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models. Seifi A; Riahi-Madvar H Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]