These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34448165)

  • 1. Computer Vision and Less Complex Image Analyses to Monitor Potato Traits in Fields.
    Gao J; Westergaard JC; Alexandersson E
    Methods Mol Biol; 2021; 2354():273-299. PubMed ID: 34448165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
    Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H
    J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops.
    Zhang C; Craine WA; McGee RJ; Vandemark GJ; Davis JB; Brown J; Hulbert SH; Sankaran S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop phenotyping in a context of global change: What to measure and how to do it.
    Araus JL; Kefauver SC; Vergara-Díaz O; Gracia-Romero A; Rezzouk FZ; Segarra J; Buchaillot ML; Chang-Espino M; Vatter T; Sanchez-Bragado R; Fernandez-Gallego JA; Serret MD; Bort J
    J Integr Plant Biol; 2022 Feb; 64(2):592-618. PubMed ID: 34807514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications.
    Douklias A; Karagiannidis L; Misichroni F; Amditis A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light Drones for Basic In-Field Phenotyping and Precision Farming Applications: RGB Tools Based on Image Analysis.
    Pallottino F; Figorilli S; Cecchini C; Costa C
    Methods Mol Biol; 2021; 2264():269-278. PubMed ID: 33263916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Extraction of Seed Traits Using Image Acquisition and Analysis.
    Zhang C; Sankaran S
    Methods Mol Biol; 2022; 2539():71-76. PubMed ID: 35895197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.
    Salas Fernandez MG; Bao Y; Tang L; Schnable PS
    Plant Physiol; 2017 Aug; 174(4):2008-2022. PubMed ID: 28620124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Evaluation of Field Crop Performance Using Modern Phenotyping Tools and Techniques.
    Boomsma CR; da Costa VA
    Methods Mol Biol; 2019; 1864():419-440. PubMed ID: 30415350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potato in the age of biotechnology.
    Mullins E; Milbourne D; Petti C; Doyle-Prestwich BM; Meade C
    Trends Plant Sci; 2006 May; 11(5):254-60. PubMed ID: 16621672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in optical phenotyping of cereal crops.
    Sun D; Robbins K; Morales N; Shu Q; Cen H
    Trends Plant Sci; 2022 Feb; 27(2):191-208. PubMed ID: 34417079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley.
    Kefauver SC; Vicente R; Vergara-Díaz O; Fernandez-Gallego JA; Kerfal S; Lopez A; Melichar JPE; Serret Molins MD; Araus JL
    Front Plant Sci; 2017; 8():1733. PubMed ID: 29067032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput field crop phenotyping: current status and challenges.
    Ninomiya S
    Breed Sci; 2022 Mar; 72(1):3-18. PubMed ID: 36045897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.
    Yang G; Liu J; Zhao C; Li Z; Huang Y; Yu H; Xu B; Yang X; Zhu D; Zhang X; Zhang R; Feng H; Zhao X; Li Z; Li H; Yang H
    Front Plant Sci; 2017; 8():1111. PubMed ID: 28713402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat.
    Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J
    Front Plant Sci; 2019; 10():394. PubMed ID: 31019521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.