BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34448168)

  • 1. Gene Editing in Potato Using CRISPR-Cas9 Technology.
    Chauvin L; Sevestre F; Lukan T; Nogué F; Gallois JL; Chauvin JE; Veillet F
    Methods Mol Biol; 2021; 2354():331-351. PubMed ID: 34448168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing in Potato with CRISPR/Cas9.
    Nadakuduti SS; Starker CG; Voytas DF; Buell CR; Douches DS
    Methods Mol Biol; 2019; 1917():183-201. PubMed ID: 30610637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding.
    González MN; Massa GA; Andersson M; Storani L; Olsson N; Décima Oneto CA; Hofvander P; Feingold SE
    Methods Mol Biol; 2023; 2653():333-361. PubMed ID: 36995636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitating gene editing in potato: a Single-Nucleotide Polymorphism (SNP) map of the Solanum tuberosum L. cv. Desiree genome.
    Sevestre F; Facon M; Wattebled F; Szydlowski N
    Sci Rep; 2020 Feb; 10(1):2045. PubMed ID: 32029861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.
    Khromov AV; Gushchin VA; Timerbaev VI; Kalinina NO; Taliansky ME; Makarov VV
    Dokl Biochem Biophys; 2018 Mar; 479(1):90-94. PubMed ID: 29779105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato.
    Veillet F; Chauvin L; Kermarrec MP; Sevestre F; Merrer M; Terret Z; Szydlowski N; Devaux P; Gallois JL; Chauvin JE
    Plant Cell Rep; 2019 Sep; 38(9):1065-1080. PubMed ID: 31101972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.
    Butler NM; Atkins PA; Voytas DF; Douches DS
    PLoS One; 2015; 10(12):e0144591. PubMed ID: 26657719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.
    Yu Z; Chen Q; Chen W; Zhang X; Mei F; Zhang P; Zhao M; Wang X; Shi N; Jackson S; Hong Y
    J Integr Plant Biol; 2018 May; 60(5):376-381. PubMed ID: 29226588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery.
    Andersson M; Turesson H; Olsson N; Fält AS; Ohlsson P; Gonzalez MN; Samuelsson M; Hofvander P
    Physiol Plant; 2018 Dec; 164(4):378-384. PubMed ID: 29572864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgene-Free Genome Editing in Tomato and Potato Plants Using
    Veillet F; Perrot L; Chauvin L; Kermarrec MP; Guyon-Debast A; Chauvin JE; Nogué F; Mazier M
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato.
    Perroud PF; Guyon-Debast A; Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Gallois JL; Nogué F
    Plant Sci; 2022 Mar; 316():111162. PubMed ID: 35151447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.