These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34448369)

  • 1. PrepFlow: A Toolkit for Chemical Library Preparation and Management for Virtual Screening.
    Sisquellas M; Cecchini M
    Mol Inform; 2021 Dec; 40(12):e2100139. PubMed ID: 34448369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery.
    Zabolotna Y; Bonachera F; Horvath D; Lin A; Marcou G; Klimchuk O; Varnek A
    J Chem Inf Model; 2022 Sep; 62(18):4537-4548. PubMed ID: 36103300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
    Gentile F; Yaacoub JC; Gleave J; Fernandez M; Ton AT; Ban F; Stern A; Cherkasov A
    Nat Protoc; 2022 Mar; 17(3):672-697. PubMed ID: 35121854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VSPrep: A General KNIME Workflow for the Preparation of Molecules for Virtual Screening.
    Gally JM; Bourg S; Do QT; Aci-Sèche S; Bonnet P
    Mol Inform; 2017 Oct; 36(10):. PubMed ID: 28586180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience.
    Bragina ME; Daina A; Perez MAS; Michielin O; Zoete V
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated recycling of chemistry for virtual screening and library design.
    Vainio MJ; Kogej T; Raubacher F
    J Chem Inf Model; 2012 Jul; 52(7):1777-86. PubMed ID: 22657574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VSPrep: A KNIME Workflow for the Preparation of Molecular Databases for Virtual Screening.
    Gally JM; Bourg S; Fogha J; Do QT; Aci-Sèche S; Bonnet P
    Curr Med Chem; 2020; 27(38):6480-6494. PubMed ID: 31242833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Structure Similarity Search for Ligand-based Virtual Screening: Methods and Computational Resources.
    Yan X; Liao C; Liu Z; Hagler AT; Gu Q; Xu J
    Curr Drug Targets; 2016; 17(14):1580-1585. PubMed ID: 26521773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control.
    Raschka S; Scott AM; Liu N; Gunturu S; Huertas M; Li W; Kuhn LA
    J Comput Aided Mol Des; 2018 Mar; 32(3):415-433. PubMed ID: 29383467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Fragment-Screening Library.
    Taylor A; Doak BC; Scanlon MJ
    Methods Enzymol; 2018; 610():97-115. PubMed ID: 30390807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
    Karthikeyan M; Vyas R
    Comb Chem High Throughput Screen; 2015; 18(6):528-43. PubMed ID: 26138575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FilTer BaSe: A web accessible chemical database for small compound libraries.
    Kolte BS; Londhe SR; Solanki BR; Gacche RN; Meshram RJ
    J Mol Graph Model; 2018 Mar; 80():95-103. PubMed ID: 29328995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening.
    Ropp PJ; Spiegel JO; Walker JL; Green H; Morales GA; Milliken KA; Ringe JJ; Durrant JD
    J Cheminform; 2019 May; 11(1):34. PubMed ID: 31127411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based Virtual Screening.
    Li Q; Shah S
    Methods Mol Biol; 2017; 1558():111-124. PubMed ID: 28150235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Click-Chemical Space for Drug Design Using ZINClick.
    Massarotti A
    Methods Mol Biol; 2021; 2266():3-10. PubMed ID: 33759118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity.
    Quintus F; Sperandio O; Grynberg J; Petitjean M; Tuffery P
    BMC Bioinformatics; 2009 Aug; 10():245. PubMed ID: 19671127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum probability ranking principle for ligand-based virtual screening.
    Al-Dabbagh MM; Salim N; Himmat M; Ahmed A; Saeed F
    J Comput Aided Mol Des; 2017 Apr; 31(4):365-378. PubMed ID: 28220440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freely accessible databases of commercial compounds for high- throughput virtual screenings.
    Moura Barbosa AJ; Del Rio A
    Curr Top Med Chem; 2012; 12(8):866-77. PubMed ID: 22352914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor by virtual screening.
    Levoin N; Labeeuw O; Billot X; Calmels T; Danvy D; Krief S; Berrebi-Bertrand I; Lecomte JM; Schwartz JC; Capet M
    Eur J Med Chem; 2017 Jan; 125():565-572. PubMed ID: 27718472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.