These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34448392)
21. Effect of Electron Injection Layer on the Parasitic Recombination at the Hole Transport Layer/Quantum Dot Interface in Quantum Dot Light-Emitting Diodes. Park DY; Lim JH; Lee BJ; Moon DG J Nanosci Nanotechnol; 2020 Jul; 20(7):4364-4367. PubMed ID: 31968475 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic Understanding of Improved Performance of Graphene Cathode Inverted Organic Light-Emitting Diodes by Photoemission and Impedance Spectroscopy. Moon J; Cho H; Maeng MJ; Choi K; Nguyen ĐT; Han JH; Shin JW; Kwon BH; Lee J; Cho S; Lee JI; Park Y; Lee JS; Cho NS ACS Appl Mater Interfaces; 2018 Aug; 10(31):26456-26464. PubMed ID: 30010310 [TBL] [Abstract][Full Text] [Related]
23. Li and Mg Co-Doped Zinc Oxide Electron Transporting Layer for Highly Efficient Quantum Dot Light-Emitting Diodes. Kim HM; Cho S; Kim J; Shin H; Jang J ACS Appl Mater Interfaces; 2018 Jul; 10(28):24028-24036. PubMed ID: 29952540 [TBL] [Abstract][Full Text] [Related]
24. Balanced carrier injection of quantum dots light-emitting diodes: the case of interface barrier of bilayer ZnO electron transport layer. Tu Y; Wang S; Zhang Y; Chen L; Fang Y; Du Z Nanotechnology; 2018 Nov; 29(48):485203. PubMed ID: 30207296 [TBL] [Abstract][Full Text] [Related]
25. Efficient and chromaticity stable green and white organic light-emitting devices with organic-inorganic hybrid materials. Thanikachalam V; Seransenguttuvan B; Jayabharathi J RSC Adv; 2020 Jun; 10(36):21206-21221. PubMed ID: 35518720 [TBL] [Abstract][Full Text] [Related]
26. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Lee BR; Jung ED; Park JS; Nam YS; Min SH; Kim BS; Lee KM; Jeong JR; Friend RH; Kim JS; Kim SO; Song MH Nat Commun; 2014 Sep; 5():4840. PubMed ID: 25204355 [TBL] [Abstract][Full Text] [Related]
27. Enhanced hole injection in phosphorescent organic light-emitting diodes by thermally evaporating a thin indium trichloride layer. Gao CH; Cai SD; Gu W; Zhou DY; Wang ZK; Liao LS ACS Appl Mater Interfaces; 2012 Oct; 4(10):5211-6. PubMed ID: 23003119 [TBL] [Abstract][Full Text] [Related]
28. Extremely Low Roll-Off and High Efficiency Achieved by Strategic Exciton Management in Organic Light-Emitting Diodes with Simple Ultrathin Emitting Layer Structure. Zhang T; Shi C; Zhao C; Wu Z; Chen J; Xie Z; Ma D ACS Appl Mater Interfaces; 2018 Mar; 10(9):8148-8154. PubMed ID: 29436812 [TBL] [Abstract][Full Text] [Related]
29. Efficient tandem organic light-emitting diodes with non-doped structures. Qin Y; Liu CY; Li RQ; Wang J; Lu YN; Chen YH; Wang YZ; Xu YN; Zhang XW; Huang W Opt Lett; 2020 Dec; 45(23):6450-6453. PubMed ID: 33258834 [TBL] [Abstract][Full Text] [Related]
30. Highly efficient and stable electron injection layer for inverted organic light-emitting diodes. Liu J; Wu X; Shi X; Wang J; Min Z; Wang Y; Yang M; He G ACS Appl Mater Interfaces; 2015 Apr; 7(12):6438-43. PubMed ID: 25748448 [TBL] [Abstract][Full Text] [Related]
31. Photoconductive Cathode Interlayer for Enhanced Electron Injection in Inverted Polymer Light-Emitting Diodes. Luo Y; Yu T; Nian L; Liu L; Huang F; Xie Z; Ma Y ACS Appl Mater Interfaces; 2018 Apr; 10(13):11377-11381. PubMed ID: 29536728 [TBL] [Abstract][Full Text] [Related]
32. Effects of Energy-Level Alignment on Characteristics of Inverted Organic Light-Emitting Diodes. Kawamura S; Suzuki K; Sasaki T; Oono T; Shimizu T; Fukagawa H ACS Appl Mater Interfaces; 2019 Jun; 11(24):21749-21755. PubMed ID: 31185564 [TBL] [Abstract][Full Text] [Related]
34. Using an organic radical precursor as an electron injection material for efficient and stable organic light-emitting diodes. Bin Z; Liu Z; Wei P; Duan L; Qiu Y Nanotechnology; 2016 Apr; 27(17):174001. PubMed ID: 26988713 [TBL] [Abstract][Full Text] [Related]
35. Performance enhancement of single layer organic light-emitting diodes using chlorinated indium tin oxide as the anode. Wu Z; Yang Z; Xue K; Fei C; Wang F; Yan M; Zhang H; Ma D; Huang W RSC Adv; 2018 Mar; 8(20):11255-11261. PubMed ID: 35541542 [TBL] [Abstract][Full Text] [Related]
36. Bifacial passivation towards efficient FAPbBr Li M; Wang J; Mai C; Cun Y; Zhang B; Huang G; Yu D; Li J; Mu L; Cao L; Li D; Wang J; Wang J; Peng J Nanoscale; 2020 Jul; 12(27):14724-14732. PubMed ID: 32618977 [TBL] [Abstract][Full Text] [Related]
37. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices. Wang H; Ryu JT; Kwon Y J Nanosci Nanotechnol; 2012 May; 12(5):4330-4. PubMed ID: 22852401 [TBL] [Abstract][Full Text] [Related]
38. Highly Efficient All-Solution-Processed Fluorescent Organic Light-Emitting Diodes Based on a Novel Self-Host Thermally Activated Delayed Fluorescence Emitter. Ban X; Zhu A; Zhang T; Tong Z; Jiang W; Sun Y ACS Appl Mater Interfaces; 2017 Jul; 9(26):21900-21908. PubMed ID: 28593760 [TBL] [Abstract][Full Text] [Related]
39. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes. Li N; Oida S; Tulevski GS; Han SJ; Hannon JB; Sadana DK; Chen TC Nat Commun; 2013; 4():2294. PubMed ID: 23934428 [TBL] [Abstract][Full Text] [Related]
40. Enhanced performance of organic light emitting device by incorporating 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl as an efficient hole-injection nano-layer. Yun WM; Park CE; Chung DS J Nanosci Nanotechnol; 2013 Mar; 13(3):2166-70. PubMed ID: 23755661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]