These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3444843)

  • 41. Evidence that prejunctional adenosine receptors regulating acetylcholine release from rat hippocampal slices are linked to an N-ethylmaleimide-sensitive G-protein, but not to adenylate cyclase or dihydropyridine-sensitive Ca2+-channels.
    Dunér-Engström M; Fredholm BB
    Acta Physiol Scand; 1988 Sep; 134(1):119-26. PubMed ID: 2467517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca ++ and low Mg++ model in the hippocampal slice preparation.
    Dost R; Rundfeldt C
    Epilepsy Res; 2000 Jan; 38(1):53-66. PubMed ID: 10604606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of stimulus-triggered and spontaneous epileptiform activity in rat hippocampal slices by the Aconitum alkaloid mesaconitine.
    Ameri A
    Eur J Pharmacol; 1998 Jan; 342(2-3):183-91. PubMed ID: 9548384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabotropic glutamate receptor activation modulates epileptiform activity in the hippocampus.
    Rutecki PA; Yang Y
    Neuroscience; 1997 Dec; 81(4):927-35. PubMed ID: 9330356
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices.
    Hochman DW; D'Ambrosio R; Janigro D; Schwartzkroin PA
    J Neurophysiol; 1999 Jan; 81(1):49-59. PubMed ID: 9914266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cyclooxygenase-2/prostaglandin E2 pathway is involved in the somatostatin-induced decrease of epileptiform bursting in the mouse hippocampus.
    Ristori C; Cammalleri M; Martini D; Pavan B; Casini G; Cervia D; Bagnoli P
    Neuropharmacology; 2008 Apr; 54(5):874-84. PubMed ID: 18329054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of L-type calcium channels to epileptiform activity in hippocampal and neocortical slices of guinea-pigs.
    Straub H; Köhling R; Frieler A; Grigat M; Speckmann EJ
    Neuroscience; 2000; 95(1):63-72. PubMed ID: 10619462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cesium induces spontaneous epileptiform activity without changing extracellular potassium regulation in rat hippocampus.
    Xiong ZQ; Stringer JL
    J Neurophysiol; 1999 Dec; 82(6):3339-46. PubMed ID: 10601465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of epileptiform activity by adenosine A1 receptor-mediated mechanisms in the juvenile rat hippocampus.
    Tancredi V; D'Antuono M; Nehlig A; Avoli M
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1412-9. PubMed ID: 9732405
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anticonvulsant effects of tetronic acid derivatives on picrotoxin induced epileptiform activity in rat hippocampal slices.
    Köhr G; Heinemann U
    Neurosci Lett; 1990 Apr; 112(1):43-7. PubMed ID: 2385362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The expression of N-methyl-D-aspartate-receptor-mediated component during epileptiform synaptic activity in hippocampus.
    Ashwood TJ; Wheal HV
    Br J Pharmacol; 1987 Aug; 91(4):815-22. PubMed ID: 2889490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the adenosine-mediated synaptic inhibition in the CA3 area of immature and adult rat hippocampus.
    Descombes S; Avoli M; Psarropoulou C
    Brain Res Dev Brain Res; 1998 Sep; 110(1):51-9. PubMed ID: 9733916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prolonged epileptiform bursting induced by 0-Mg(2+) in rat hippocampal slices depends on gap junctional coupling.
    Köhling R; Gladwell SJ; Bracci E; Vreugdenhil M; Jefferys JG
    Neuroscience; 2001; 105(3):579-87. PubMed ID: 11516825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli.
    Stasheff SF; Bragdon AC; Wilson WA
    Brain Res; 1985 Oct; 344(2):296-302. PubMed ID: 4041878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A1 adenosine receptor-mediated block of epileptiform activity induced in zero magnesium in rat neocortex in vitro.
    O'Shaughnessy CT; Aram JA; Lodge D
    Epilepsy Res; 1988; 2(5):294-301. PubMed ID: 2461856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Suppression of excitatory synaptic transmission can facilitate low-calcium epileptiform activity in the hippocampus in vivo.
    Feng Z; Durand DM
    Brain Res; 2004 Dec; 1030(1):57-65. PubMed ID: 15567337
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons.
    Lappin SC; Dale TJ; Brown JT; Trezise DJ; Davies CH
    Brain Res; 2005 Dec; 1065(1-2):37-46. PubMed ID: 16336949
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endogenous serotonin inhibits epileptiform activity in rat hippocampal CA1 neurons via 5-hydroxytryptamine1A receptor activation.
    Lu KT; Gean PW
    Neuroscience; 1998 Oct; 86(3):729-37. PubMed ID: 9692713
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices.
    Bikson M; Baraban SC; Durand DM
    J Neurophysiol; 2002 Jan; 87(1):62-71. PubMed ID: 11784730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endogenous bursts underlie seizurelike activity in solitary excitatory hippocampal neurons in microcultures.
    Segal MM
    J Neurophysiol; 1994 Oct; 72(4):1874-84. PubMed ID: 7823106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.