These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34448566)

  • 21. Can TDDFT Describe Excited Electronic States of Naphthol Photoacids? A Closer Look with EOM-CCSD.
    Acharya A; Chaudhuri S; Batista VS
    J Chem Theory Comput; 2018 Feb; 14(2):867-876. PubMed ID: 29298059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations.
    Chen WK; Wang SR; Liu XY; Fang WH; Cui G
    Molecules; 2023 May; 28(10):. PubMed ID: 37241962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster.
    Macetti G; Genoni A
    J Chem Theory Comput; 2020 Dec; 16(12):7490-7506. PubMed ID: 33241930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane.
    Huix-Rotllant M; Natarajan B; Ipatov A; Wawire CM; Deutsch T; Casida ME
    Phys Chem Chem Phys; 2010 Oct; 12(39):12811-25. PubMed ID: 20820556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole.
    Li SL; Xu X; Truhlar DG
    Phys Chem Chem Phys; 2015 Aug; 17(31):20093-9. PubMed ID: 26088195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections.
    Li SL; Marenich AV; Xu X; Truhlar DG
    J Phys Chem Lett; 2014 Jan; 5(2):322-8. PubMed ID: 26270707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis.
    Yang J; Ou Q; Pei Z; Wang H; Weng B; Shuai Z; Mullen K; Shao Y
    J Chem Phys; 2021 Aug; 155(6):064107. PubMed ID: 34391367
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Yu JK; Bannwarth C; Hohenstein EG; Martínez TJ
    J Chem Theory Comput; 2020 Sep; 16(9):5499-5511. PubMed ID: 32786902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation.
    Hu C; Hirai H; Sugino O
    J Chem Phys; 2008 Apr; 128(15):154111. PubMed ID: 18433194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.
    Li Z; Liu W
    J Chem Theory Comput; 2016 Jun; 12(6):2517-27. PubMed ID: 27159167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.
    Kühn M; Weigend F
    J Chem Phys; 2015 Jan; 142(3):034116. PubMed ID: 25612698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies.
    Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations.
    Epifanovsky E; Klein K; Stopkowicz S; Gauss J; Krylov AI
    J Chem Phys; 2015 Aug; 143(6):064102. PubMed ID: 26277122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A time-dependent density-functional approach to nonadiabatic electron-nucleus dynamics: formulation and photochemical application.
    Hirai H; Sugino O
    Phys Chem Chem Phys; 2009 Jun; 11(22):4570-8. PubMed ID: 19475177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Derivation of spin-orbit couplings in collinear linear-response TDDFT: a rigorous formulation.
    Franco de Carvalho F; Curchod BF; Penfold TJ; Tavernelli I
    J Chem Phys; 2014 Apr; 140(14):144103. PubMed ID: 24735284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach.
    Zhang X; Herbert JM
    J Chem Phys; 2015 Feb; 142(6):064109. PubMed ID: 25681889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-order nonadiabatic couplings in extended systems by time-dependent density functional theory.
    Zhang X; Lu G
    J Chem Phys; 2018 Dec; 149(24):244103. PubMed ID: 30599713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytical excited state gradients for time-dependent density functional theory plus tight binding (TDDFT + TB).
    Havenridge S; Rüger R; Aikens CM
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spin-orbit splittings of light and heavy elements.
    Cao Z; Li Z; Wang F; Liu W
    Phys Chem Chem Phys; 2017 Feb; 19(5):3713-3721. PubMed ID: 28097277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.