These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. On the role of basic residues in adapting the reaction centre-LH1 complex for growth at elevated temperatures in purple bacteria. Watson AJ; Hughes AV; Fyfe PK; Wakeham MC; Holden-Dye K; Heathcote P; Jones MR Photosynth Res; 2005 Nov; 86(1-2):81-100. PubMed ID: 16172928 [TBL] [Abstract][Full Text] [Related]
44. Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Suzuki H; Hirano Y; Kimura Y; Takaichi S; Kobayashi M; Miki K; Wang ZY Biochim Biophys Acta; 2007 Aug; 1767(8):1057-63. PubMed ID: 17658456 [TBL] [Abstract][Full Text] [Related]
45. The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. Frese RN; Olsen JD; Branvall R; Westerhuis WH; Hunter CN; van Grondelle R Proc Natl Acad Sci U S A; 2000 May; 97(10):5197-202. PubMed ID: 10792034 [TBL] [Abstract][Full Text] [Related]
46. Consequences for the organization of reaction center-light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 alpha polypeptide. McGlynn P; Westerhuis WH; Jones MR; Hunter CN J Biol Chem; 1996 Feb; 271(6):3285-92. PubMed ID: 8621732 [TBL] [Abstract][Full Text] [Related]
47. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling. Ma F; Kimura Y; Yu LJ; Wang P; Ai XC; Wang ZY; Zhang JP FEBS J; 2009 Mar; 276(6):1739-49. PubMed ID: 19226412 [TBL] [Abstract][Full Text] [Related]
48. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. Qian P; Bullough PA; Hunter CN J Biol Chem; 2008 May; 283(20):14002-11. PubMed ID: 18326046 [TBL] [Abstract][Full Text] [Related]
49. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc Swainsbury DJK; Proctor MS; Hitchcock A; Cartron ML; Qian P; Martin EC; Jackson PJ; Madsen J; Armes SP; Hunter CN Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):215-225. PubMed ID: 29291373 [TBL] [Abstract][Full Text] [Related]
50. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. Yu LJ; Kato S; Wang ZY Photosynth Res; 2010 Dec; 106(3):215-20. PubMed ID: 20886371 [TBL] [Abstract][Full Text] [Related]
51. Calcium and the ecology of photosynthesis in purple sulfur bacteria. Madigan MT; Sattley WM; Kimura Y; Wang-Otomo ZY Environ Microbiol; 2024 Feb; 26(2):e16591. PubMed ID: 38387883 [TBL] [Abstract][Full Text] [Related]
52. Effects of Calcium Ions on the Thermostability and Spectroscopic Properties of the LH1-RC Complex from a New Thermophilic Purple Bacterium Allochromatium tepidum. Kimura Y; Lyu S; Okoshi A; Okazaki K; Nakamura N; Ohashi A; Ohno T; Kobayashi M; Imanishi M; Takaichi S; Madigan MT; Wang-Otomo ZY J Phys Chem B; 2017 May; 121(19):5025-5032. PubMed ID: 28459569 [TBL] [Abstract][Full Text] [Related]
53. The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Francia F; Wang J; Venturoli G; Melandri BA; Barz WP; Oesterhelt D Biochemistry; 1999 May; 38(21):6834-45. PubMed ID: 10346905 [TBL] [Abstract][Full Text] [Related]
54. Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Cao P; Bracun L; Yamagata A; Christianson BM; Negami T; Zou B; Terada T; Canniffe DP; Shirouzu M; Li M; Liu LN Nat Commun; 2022 Apr; 13(1):1977. PubMed ID: 35418573 [TBL] [Abstract][Full Text] [Related]
55. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. Thwaites O; Christianson BM; Cowan AJ; Jäckel F; Liu LN; Gardner AM J Phys Chem B; 2023 Aug; 127(33):7283-7290. PubMed ID: 37556839 [TBL] [Abstract][Full Text] [Related]
56. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Todd JB; Parkes-Loach PS; Leykam JF; Loach PA Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861 [TBL] [Abstract][Full Text] [Related]
57. Dimerisation of the Rhodobacter sphaeroides RC-LH1 photosynthetic complex is not facilitated by a GxxxG motif in the PufX polypeptide. Crouch LI; Holden-Dye K; Jones MR Biochim Biophys Acta; 2010 Nov; 1797(11):1812-9. PubMed ID: 20646993 [TBL] [Abstract][Full Text] [Related]
58. The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Pugh RJ; McGlynn P; Jones MR; Hunter CN Biochim Biophys Acta; 1998 Sep; 1366(3):301-16. PubMed ID: 9814844 [TBL] [Abstract][Full Text] [Related]
59. Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Ma F; Kimura Y; Zhao XH; Wu YS; Wang P; Fu LM; Wang ZY; Zhang JP Biophys J; 2008 Oct; 95(7):3349-57. PubMed ID: 18502793 [TBL] [Abstract][Full Text] [Related]
60. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. Woronowicz K; Sha D; Frese RN; Niederman RA Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]