These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34448583)

  • 1. GaO
    Ji YH; Gao Q; Huang AP; Yang MQ; Liu YQ; Geng XL; Zhang JJ; Wang RZ; Wang M; Xiao ZS; Chu PK
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41916-41925. PubMed ID: 34448583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode.
    Liu L; Xia S; Diao Y; Lu F; Tian J
    Nanotechnology; 2020 Jan; 31(2):025201. PubMed ID: 31539893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO nanowire optoelectronic synapse for neuromorphic computing.
    Shen C; Gao X; Chen C; Ren S; Xu JL; Xia YD; Wang SD
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34736234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoelectronic Synapse Based on 2D Electron Gas in Stoichiometry-Controlled Oxide Heterostructures.
    Lee M; Kim Y; Mo SH; Kim S; Eom K; Lee H
    Small; 2024 Jun; 20(25):e2309851. PubMed ID: 38214690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimension- and position-controlled growth of GaN microstructure arrays on graphene films for flexible device applications.
    Yoo D; Lee K; Tchoe Y; Guha P; Ali A; Saroj RK; Lee S; Islam ABMH; Kim M; Yi GC
    Sci Rep; 2021 Sep; 11(1):17524. PubMed ID: 34471184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing.
    Yao J; Wang Q; Zhang Y; Teng Y; Li J; Zhao P; Zhao C; Hu Z; Shen Z; Liu L; Tian D; Qiu S; Wang Z; Kang L; Li Q
    Nat Commun; 2024 Jul; 15(1):6147. PubMed ID: 39034334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Mode Conversion of Photodetector and Neuromorphic Vision Sensor via Bias Voltage Regulation on a Single Device.
    Feng S; Li J; Feng L; Liu Z; Wang J; Cui C; Zhou O; Deng L; Xu H; Leng B; Chen XQ; Jiang X; Liu B; Zhang X
    Adv Mater; 2023 Dec; 35(49):e2308090. PubMed ID: 37813402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual effects of nanowire-nanowire junctions on the persistent photoconductivity in SnO
    Costa IM; de Araújo EP; Arantes AN; Zaghete MA; Chiquito AJ
    Nanotechnology; 2020 Oct; 32(1):015702. PubMed ID: 33043905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires.
    Léonard F; Song E; Li Q; Swartzentruber B; Martinez JA; Wang GT
    Nano Lett; 2015 Dec; 15(12):8129-35. PubMed ID: 26529491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity.
    Lee M; Lee W; Choi S; Jo JW; Kim J; Park SK; Kim YH
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28514064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Improvement of Long-Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia-Based Oxide-Semiconductor Transistors.
    Kim MK; Lee JS
    Adv Mater; 2020 Mar; 32(12):e1907826. PubMed ID: 32053265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes.
    Wang S; Sun C; Shao Y; Wu Y; Zhang L; Hao X
    Small; 2017 Feb; 13(8):. PubMed ID: 27982526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays.
    Jeon S; Ahn SE; Song I; Kim CJ; Chung UI; Lee E; Yoo I; Nathan A; Lee S; Robertson J; Kim K
    Nat Mater; 2012 Feb; 11(4):301-5. PubMed ID: 22367002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Optogenetics-Inspired Flexible van der Waals Optoelectronic Synapse and its Application to a Convolutional Neural Network.
    Seo S; Lee JJ; Lee RG; Kim TH; Park S; Jung S; Lee HK; Andreev M; Lee KB; Jung KS; Oh S; Lee HJ; Kim KS; Yeom GY; Kim YH; Park JH
    Adv Mater; 2021 Oct; 33(40):e2102980. PubMed ID: 34423469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation control for the growth of vertically aligned GaN nanowires.
    Hou WC; Wu TH; Tang WC; Hong FC
    Nanoscale Res Lett; 2012 Jul; 7(1):373. PubMed ID: 22768872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable and High Piezoelectric Output of GaN Nanowire-Based Lead-Free Piezoelectric Nanogenerator by Suppression of Internal Screening.
    Johar MA; Hassan MA; Waseem A; Ha JS; Lee JK; Ryu SW
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29904016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition.
    Huang K; Zhang Q
    Nanoscale Res Lett; 2011 Dec; 6(1):52. PubMed ID: 27502674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired mechano-photonic artificial synapse based on graphene/MoS
    Yu J; Yang X; Gao G; Xiong Y; Wang Y; Han J; Chen Y; Zhang H; Sun Q; Wang ZL
    Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33731346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array.
    Zhang Z; Zhao X; Zhang X; Hou X; Ma X; Tang S; Zhang Y; Xu G; Liu Q; Long S
    Nat Commun; 2022 Nov; 13(1):6590. PubMed ID: 36329017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.
    Behzadirad M; Nami M; Wostbrock N; Zamani Kouhpanji MR; Feezell DF; Brueck SRJ; Busani T
    ACS Nano; 2018 Mar; 12(3):2373-2380. PubMed ID: 29401381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.