BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34448635)

  • 1. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats.
    Hayes BD; Fossey MPM; Poormasjedi-Meibod MS; Erskine E; Soriano JE; Scott B; Rosentreter R; Granville DJ; Phillips AA; West CR
    Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H716-H727. PubMed ID: 34448635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebrovascular responses to orthostatic stress after spinal cord injury.
    Sahota IS; Ravensbergen HR; McGrath MS; Claydon VE
    J Neurotrauma; 2012 Oct; 29(15):2446-56. PubMed ID: 22720841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthostatic hypotension and autonomic pathways after spinal cord injury.
    Claydon VE; Krassioukov AV
    J Neurotrauma; 2006 Dec; 23(12):1713-25. PubMed ID: 17184183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology.
    Claydon VE; Steeves JD; Krassioukov A
    Spinal Cord; 2006 Jun; 44(6):341-51. PubMed ID: 16304564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress.
    Zhang R; Zuckerman JH; Pawelczyk JA; Levine BD
    J Appl Physiol (1985); 1997 Dec; 83(6):2139-45. PubMed ID: 9390992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine.
    Phillips AA; Krassioukov AV; Ainslie PN; Warburton DE
    J Appl Physiol (1985); 2014 Mar; 116(6):645-53. PubMed ID: 24436297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregulation of cerebral blood flow in patients with orthostatic hypotension after spinal cord injury.
    Gonzalez F; Chang JY; Banovac K; Messina D; Martinez-Arizala A; Kelley RE
    Paraplegia; 1991 Jan; 29(1):1-7. PubMed ID: 2023766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular-Cognitive Impairment following High-Thoracic Spinal Cord Injury Is Associated with Structural and Functional Maladaptations in Cerebrovasculature.
    Sachdeva R; Jia M; Wang S; Yung A; Zheng MMZ; Lee AHX; Monga A; Leong S; Kozlowski P; Fan F; Roman RJ; Phillips AA; Krassioukov AV
    J Neurotrauma; 2020 Sep; 37(18):1963-1970. PubMed ID: 32394805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection.
    Phillips AA; Matin N; Frias B; Zheng MM; Jia M; West C; Dorrance AM; Laher I; Krassioukov AV
    J Physiol; 2016 Mar; 594(6):1677-88. PubMed ID: 26634420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.
    Levine BD; Giller CA; Lane LD; Buckey JC; Blomqvist CG
    Circulation; 1994 Jul; 90(1):298-306. PubMed ID: 8026012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.
    Lucas RAI; Wilson LC; Ainslie PN; Fan JL; Thomas KN; Cotter JD
    Am J Physiol Regul Integr Comp Physiol; 2018 Mar; 314(3):R415-R426. PubMed ID: 29212807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart rate variability in spinal cord injury: Asymptomatic orthostatic hypotension is a confounding variable.
    Stampas A; Zhu L; Li S
    Neurosci Lett; 2019 Jun; 703():213-218. PubMed ID: 30904574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord injury-induced cardiomyocyte atrophy and impaired cardiac function are severity dependent.
    Squair JW; Liu J; Tetzlaff W; Krassioukov AV; West CR
    Exp Physiol; 2018 Feb; 103(2):179-189. PubMed ID: 29235182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cerebrovascular response to lower-body negative pressure vs. head-up tilt.
    Bronzwaer AG; Verbree J; Stok WJ; Daemen MJ; van Buchem MA; van Osch MJ; van Lieshout JJ
    J Appl Physiol (1985); 2017 Apr; 122(4):877-883. PubMed ID: 28082333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomic cardiovascular control in Paralympic athletes with spinal cord injury.
    West CR; Wong SC; Krassioukov AV
    Med Sci Sports Exerc; 2014 Jan; 46(1):60-8. PubMed ID: 23739527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals.
    Houtman S; Serrador JM; Colier WN; Strijbos DW; Shoemaker K; Hopman MT
    J Appl Physiol (1985); 2001 Nov; 91(5):2199-204. PubMed ID: 11641362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral analyses of cardiovascular control in rodents with spinal cord injury.
    Inskip JA; Ramer LM; Ramer MS; Krassioukov AV; Claydon VE
    J Neurotrauma; 2012 May; 29(8):1638-49. PubMed ID: 22260380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic vascular resistance is increased and associated with accelerated arterial stiffening change in patients with chronic cervical spinal cord injury.
    Huang SC; May-Kuen Wong A; Lien HY; Fuk-Tan Tang S; Fu TC; Lin Y; Wang JS
    Eur J Phys Rehabil Med; 2013 Feb; 49(1):41-9. PubMed ID: 22820816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of early and delayed initiation of exercise training on cardiac and haemodynamic function after spinal cord injury.
    Popok DW; West CR; McCracken L; Krassioukov AV
    Exp Physiol; 2017 Feb; 102(2):154-163. PubMed ID: 28004433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased pulse wave velocity in persons with spinal cord injury: the effect of the renin-angiotensin-aldosterone system.
    Katzelnick CG; Weir JP; Pinto Zipp G; LaFountaine MF; Bauman WA; Dyson-Hudson TA; Wecht JM
    Am J Physiol Heart Circ Physiol; 2021 Jan; 320(1):H272-H280. PubMed ID: 33095646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.