These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34448707)
1. A Machine Learning Approach to Passively Informed Prediction of Mental Health Risk in People with Diabetes: Retrospective Case-Control Analysis. Yu J; Chiu C; Wang Y; Dzubur E; Lu W; Hoffman J J Med Internet Res; 2021 Aug; 23(8):e27709. PubMed ID: 34448707 [TBL] [Abstract][Full Text] [Related]
2. Proactive Identification of Patients with Diabetes at Risk of Uncontrolled Outcomes during a Diabetes Management Program: Conceptualization and Development Study Using Machine Learning. Khalilnejad A; Sun RT; Kompala T; Painter S; James R; Wang Y JMIR Form Res; 2024 Apr; 8():e54373. PubMed ID: 38669074 [TBL] [Abstract][Full Text] [Related]
3. Using Passive Smartphone Sensing for Improved Risk Stratification of Patients With Depression and Diabetes: Cross-Sectional Observational Study. Sarda A; Munuswamy S; Sarda S; Subramanian V JMIR Mhealth Uhealth; 2019 Jan; 7(1):e11041. PubMed ID: 30694197 [TBL] [Abstract][Full Text] [Related]
4. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach. Sükei E; Norbury A; Perez-Rodriguez MM; Olmos PM; Artés A JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24465. PubMed ID: 33749612 [TBL] [Abstract][Full Text] [Related]
5. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Li J; Chen Q; Hu X; Yuan P; Cui L; Tu L; Cui J; Huang J; Jiang T; Ma X; Yao X; Zhou C; Lu H; Xu J Int J Med Inform; 2021 May; 149():104429. PubMed ID: 33647600 [TBL] [Abstract][Full Text] [Related]
6. Using Momentary Assessment and Machine Learning to Identify Barriers to Self-management in Type 1 Diabetes: Observational Study. Zhang P; Fonnesbeck C; Schmidt DC; White J; Kleinberg S; Mulvaney SA JMIR Mhealth Uhealth; 2022 Mar; 10(3):e21959. PubMed ID: 35238791 [TBL] [Abstract][Full Text] [Related]
7. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY; Chang MY; Heo S; Jang JY Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320 [TBL] [Abstract][Full Text] [Related]
8. Predicting the Next-Day Perceived and Physiological Stress of Pregnant Women by Using Machine Learning and Explainability: Algorithm Development and Validation. Ng A; Wei B; Jain J; Ward EA; Tandon SD; Moskowitz JT; Krogh-Jespersen S; Wakschlag LS; Alshurafa N JMIR Mhealth Uhealth; 2022 Aug; 10(8):e33850. PubMed ID: 35917157 [TBL] [Abstract][Full Text] [Related]
9. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
10. Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies. Adler DA; Wang F; Mohr DC; Choudhury T PLoS One; 2022; 17(4):e0266516. PubMed ID: 35476787 [TBL] [Abstract][Full Text] [Related]
11. Predicting 1-year mortality of patients with diabetes mellitus in Kazakhstan based on administrative health data using machine learning. Alimbayev A; Zhakhina G; Gusmanov A; Sakko Y; Yerdessov S; Arupzhanov I; Kashkynbayev A; Zollanvari A; Gaipov A Sci Rep; 2023 May; 13(1):8412. PubMed ID: 37225754 [TBL] [Abstract][Full Text] [Related]
12. Bayesian Networks for Prescreening in Depression: Algorithm Development and Validation. Maekawa E; Grua EM; Nakamura CA; Scazufca M; Araya R; Peters T; van de Ven P JMIR Ment Health; 2024 Jul; 11():e52045. PubMed ID: 38963925 [TBL] [Abstract][Full Text] [Related]
13. Tailored machine learning for evaluating the long-term diabetes risk in older individuals: findings from the Irish Longitudinal Study on Ageing (TILDA). Xu X; Mingyang X; Yang J; Zheng H; Che Z BMJ Open; 2023 May; 13(5):e072991. PubMed ID: 37253496 [TBL] [Abstract][Full Text] [Related]
14. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. Haines-Delmont A; Chahal G; Bruen AJ; Wall A; Khan CT; Sadashiv R; Fearnley D JMIR Mhealth Uhealth; 2020 Jun; 8(6):e15901. PubMed ID: 32442152 [TBL] [Abstract][Full Text] [Related]
15. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation. Zhang Y; Yang D; Liu Z; Chen C; Ge M; Li X; Luo T; Wu Z; Shi C; Wang B; Huang X; Zhang X; Zhou S; Hei Z J Transl Med; 2021 Jul; 19(1):321. PubMed ID: 34321016 [TBL] [Abstract][Full Text] [Related]
16. COVID-19 mortality risk assessments for individuals with and without diabetes mellitus: Machine learning models integrated with interpretation framework. Khadem H; Nemat H; Eissa MR; Elliott J; Benaissa M Comput Biol Med; 2022 May; 144():105361. PubMed ID: 35255295 [TBL] [Abstract][Full Text] [Related]
17. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up. Dai C; Fan Y; Li Y; Bao X; Li Y; Su M; Yao Y; Deng K; Xing B; Feng F; Feng M; Wang R Front Endocrinol (Lausanne); 2020; 11():643. PubMed ID: 33042013 [No Abstract] [Full Text] [Related]
18. Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks. Adler DA; Ben-Zeev D; Tseng VW; Kane JM; Brian R; Campbell AT; Hauser M; Scherer EA; Choudhury T JMIR Mhealth Uhealth; 2020 Aug; 8(8):e19962. PubMed ID: 32865506 [TBL] [Abstract][Full Text] [Related]
19. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
20. Maternal Social Loneliness Detection Using Passive Sensing Through Continuous Monitoring in Everyday Settings: Longitudinal Study. Sarhaddi F; Azimi I; Niela-Vilen H; Axelin A; Liljeberg P; Rahmani AM JMIR Form Res; 2023 Aug; 7():e47950. PubMed ID: 37556183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]