These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34449128)
21. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. Kim SH; Choi KH; Cho SJ; Choi S; Park S; Lee SY Nano Lett; 2015 Aug; 15(8):5168-77. PubMed ID: 26176939 [TBL] [Abstract][Full Text] [Related]
23. Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. Li M; Li Z; Ye X; Zhang X; Qu L; Tian M ACS Appl Mater Interfaces; 2021 Apr; 13(14):17110-17117. PubMed ID: 33797215 [TBL] [Abstract][Full Text] [Related]
24. A moisture-enabled fully printable power source inspired by electric eels. Yang L; Yang F; Liu X; Li K; Zhou Y; Wang Y; Yu T; Zhong M; Xu X; Zhang L; Shen W; Wei D Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33846255 [TBL] [Abstract][Full Text] [Related]
25. Lithium Titanate Cuboid Arrays Grown on Carbon Fiber Cloth for High-Rate Flexible Lithium-Ion Batteries. Wang C; Wang X; Lin C; Zhao XS Small; 2019 Oct; 15(42):e1902183. PubMed ID: 31456289 [TBL] [Abstract][Full Text] [Related]
26. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture. Zhang Y; Wang L; Guo Z; Xu Y; Wang Y; Peng H Angew Chem Int Ed Engl; 2016 Mar; 55(14):4487-91. PubMed ID: 26929017 [TBL] [Abstract][Full Text] [Related]
27. Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries. Bao Y; Hong G; Chen Y; Chen J; Chen H; Song WL; Fang D ACS Appl Mater Interfaces; 2020 Jan; 12(1):780-788. PubMed ID: 31849209 [TBL] [Abstract][Full Text] [Related]
28. Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots. Kim MH; Nam S; Oh M; Lee HJ; Jang B; Hyun S Soft Robot; 2022 Jun; 9(3):486-496. PubMed ID: 34402653 [TBL] [Abstract][Full Text] [Related]
29. Scalable Production of Wearable Solid-State Li-Ion Capacitors from N-Doped Hierarchical Carbon. Xu Y; Wang K; Han J; Liu C; An Y; Meng Q; Li C; Zhang X; Sun X; Zhang Y; Mao L; Wei Z; Ma Y Adv Mater; 2020 Nov; 32(45):e2005531. PubMed ID: 33002239 [TBL] [Abstract][Full Text] [Related]
30. Multimodal Capturing of Polysulfides by Phosphorus-Doped Carbon Composites for Flexible High-Energy-Density Lithium-Sulfur Batteries. Jo SC; Hong JW; Choi IH; Kim MJ; Kim BG; Lee YJ; Choi HY; Kim D; Kim T; Baeg KJ; Park JW Small; 2022 May; 18(21):e2200326. PubMed ID: 35285157 [TBL] [Abstract][Full Text] [Related]
31. Ultrathin, Lightweight, and Wearable Li-O Liu T; Xu JJ; Liu QC; Chang ZW; Yin YB; Yang XY; Zhang XB Small; 2017 Feb; 13(6):. PubMed ID: 27860256 [TBL] [Abstract][Full Text] [Related]
32. High-Voltage Flexible Aqueous Zn-Ion Battery with Extremely Low Dropout Voltage and Super-Flat Platform. Chen Z; Wang P; Ji Z; Wang H; Liu J; Wang J; Hu M; Huang Y Nanomicro Lett; 2020 Mar; 12(1):75. PubMed ID: 34138267 [TBL] [Abstract][Full Text] [Related]
33. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries. Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506 [TBL] [Abstract][Full Text] [Related]
34. Flexible and robust silicon/carbon nanotube anodes exhibiting high areal capacities. Xie C; Xu N; Shi P; Lv Y; Maleki Kheimeh Sari H; Shi JW; Xiao W; Qin J; Yang H; Li W; Wang J; Hu J; Sun X; Li X J Colloid Interface Sci; 2022 Nov; 625():871-878. PubMed ID: 35777094 [TBL] [Abstract][Full Text] [Related]
35. An Ultraflexible Silicon-Oxygen Battery Fiber with High Energy Density. Zhang Y; Jiao Y; Lu L; Wang L; Chen T; Peng H Angew Chem Int Ed Engl; 2017 Oct; 56(44):13741-13746. PubMed ID: 28940534 [TBL] [Abstract][Full Text] [Related]
36. Mechano-Graded Electrodes Mitigate the Mismatch between Mechanical Reliability and Energy Density for Foldable Lithium-Ion Batteries. Ge X; Cao S; Lv Z; Zhu Z; Tang Y; Xia H; Zhang H; Wei J; Zhang W; Zhang Y; Zeng Y; Chen X Adv Mater; 2022 Nov; 34(45):e2206797. PubMed ID: 36134539 [TBL] [Abstract][Full Text] [Related]
37. Structural engineering of electrodes for flexible energy storage devices. Sun Y; Chong WG Mater Horiz; 2023 Jul; 10(7):2373-2397. PubMed ID: 37144354 [TBL] [Abstract][Full Text] [Related]
38. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries. Gaikwad AM; Arias AC ACS Appl Mater Interfaces; 2017 Feb; 9(7):6390-6400. PubMed ID: 28151639 [TBL] [Abstract][Full Text] [Related]
39. Encapsulating MoO Zhang X; Gao M; Wang W; Liu B; Li X Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374695 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode. Kang C; Cha E; Baskaran R; Choi W Nanotechnology; 2016 Mar; 27(10):105402. PubMed ID: 26861692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]