These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34449220)

  • 41. Sulfonated poly(ethylene oxide)-grafted polyurethane copolymer for biomedical applications.
    Han DK; Park KD; Kim YH
    J Biomater Sci Polym Ed; 1998; 9(2):163-74. PubMed ID: 9493843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.
    Kwon HJ; Lee Y; Phuong LT; Seon GM; Kim E; Park JC; Yoon H; Park KD
    Acta Biomater; 2017 Oct; 61():169-179. PubMed ID: 28782724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections.
    Gultekinoglu M; Tunc Sarisozen Y; Erdogdu C; Sagiroglu M; Aksoy EA; Oh YJ; Hinterdorfer P; Ulubayram K
    Acta Biomater; 2015 Jul; 21():44-54. PubMed ID: 25848724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antifouling and Antibacterial Surfaces Grafted with Sulfur-Containing Copolymers.
    Xu X; Wang Q; Chang Y; Zhang Y; Peng H; Whittaker AK; Fu C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41400-41411. PubMed ID: 36040859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene "Click Chemistry" Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane.
    Felgueiras HP; Wang LM; Ren KF; Querido MM; Jin Q; Barbosa MA; Ji J; Martins MC
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):7979-7989. PubMed ID: 28165702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The antibacterial and antialgal enhancement of the hydroquinone acrylamide polyurethane coating based on microphase separation.
    Chang X; Xiaohui S; Zhijia Z; Wenjun Z; Songsong Z; Guojun W; Qiang W; Teng M; Lin W; Hao W; Minhao M
    Colloids Surf B Biointerfaces; 2024 Jul; 239():113962. PubMed ID: 38749167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan.
    Muzaffar S; Bhatti IA; Zuber M; Bhatti HN; Shahid M
    Int J Biol Macromol; 2017 Jan; 94(Pt A):51-60. PubMed ID: 27702659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphonate/zwitterionic/cationic terpolymers as high-efficiency bactericidal and antifouling coatings for metallic substrates.
    Zhang X; Liu L; Peng W; Dong X; Gu Y; Ma Z; Gan D; Liu P
    J Mater Chem B; 2021 May; 9(20):4169-4177. PubMed ID: 33989375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A self-defense hierarchical antibacterial surface with inherent antifouling and bacteria-activated bactericidal properties for infection resistance.
    Wang L; Sun L; Zhang X; Wang H; Song L; Luan S
    Biomater Sci; 2022 Apr; 10(8):1968-1980. PubMed ID: 35258043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP.
    Jin Z; Feng W; Zhu S; Sheardown H; Brash JL
    J Biomed Mater Res A; 2010 Dec; 95(4):1223-32. PubMed ID: 20939048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a novel biodegradable and anti-bacterial polyurethane coating for biomedical magnesium rods.
    Wang C; Yi Z; Sheng Y; Tian L; Qin L; Ngai T; Lin W
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():344-356. PubMed ID: 30889708
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing.
    Liu M; Liu T; Chen X; Yang J; Deng J; He W; Zhang X; Lei Q; Hu X; Luo G; Wu J
    J Nanobiotechnology; 2018 Nov; 16(1):89. PubMed ID: 30419925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties.
    Xin X; Li P; Zhu Y; Shi L; Yuan J; Shen J
    Langmuir; 2019 Feb; 35(5):1788-1797. PubMed ID: 30089363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradable polyurethane cytocompatibility to fibroblasts and staphylococci.
    Harris LG; Gorna K; Gogolewski S; Richards RG
    J Biomed Mater Res A; 2006 May; 77(2):304-12. PubMed ID: 16400656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zwitterionic/active ester block polymers as multifunctional coatings for polyurethane-based substrates.
    Ma Z; Sun J; Dong X; Gan D; Peng W; Li Y; Qian W; Liu P; Shen J
    J Mater Chem B; 2022 May; 10(19):3687-3695. PubMed ID: 35438121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration.
    Jiang J; Li L; Li K; Li G; You F; Zuo Y; Li Y; Li J
    J Biomater Sci Polym Ed; 2016 Nov; 27(16):1584-98. PubMed ID: 27501157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and surface properties of PEO-sulfonate grafted polyurethanes for enhanced blood compatibility.
    Han DK; Jeong SY; Ahn KD; Kim YH; Min BG
    J Biomater Sci Polym Ed; 1993; 4(6):579-89. PubMed ID: 8280672
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue reactions to bacteria-inoculated rat lead samples. II. Effect of local gentamicin release through surface-modified polyurethane tubing.
    van Wachem PB; van Luyn MJ; de Wit AW; Raatjes D; Hendriks M; Verhoeven ML; Cahalan PT
    J Biomed Mater Res; 1997 May; 35(2):233-47. PubMed ID: 9135172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.