These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 34449555)

  • 21. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward bias minimization in acoustic feedback cancellation systems.
    Boukis C; Mandic DP; Constantinides AG
    J Acoust Soc Am; 2007 Mar; 121(3):1529-37. PubMed ID: 17407890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance analysis of approximate Affine Projection Algorithm in acoustic feedback cancellation.
    Nikjoo S M; Seyedi A; Tehrani AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():258-61. PubMed ID: 19162642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path.
    Costa MH
    Comput Biol Med; 2017 Dec; 91():243-254. PubMed ID: 29101793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust adaptive microphone array processing for hearing aids: realistic speech enhancement.
    Hoffman MW; Trine TD; Buckley KM; Van Tasell DJ
    J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):759-70. PubMed ID: 7930077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning solution to the marginal stability problems of acoustic feedback systems for hearing aids.
    Zheng C; Wang M; Li X; Moore BCJ
    J Acoust Soc Am; 2022 Dec; 152(6):3616. PubMed ID: 36586835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feedback reduction system influence on additional gain before feedback and maximum stable gain in open-fitted hearing aids.
    Marcrum SC; Picou EM; Bohr C; Steffens T
    Int J Audiol; 2018 Oct; 57(10):737-745. PubMed ID: 30394158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design Guidelines for Feedforward Cancellation of the Occlusion-Effect in Hearing Aids.
    Borges RC; Parreira WD; Costa MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():607-610. PubMed ID: 31945971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the occlusion effect over the prediction-error feedback cancellation system in hearing aids.
    Coelho Borges R; Holsbach Costa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2725-8. PubMed ID: 26736855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Industrial wideband noise reduction for hearing aids using a headset with adaptive-feedback active noise cancellation.
    Lin JH; Li PC; Tang ST; Liu PT; Young ST
    Med Biol Eng Comput; 2005 Nov; 43(6):739-45. PubMed ID: 16594300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Music and hearing aids.
    Madsen SM; Moore BC
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25361601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probe microphone measurements: 20 years of progress.
    Mueller HG
    Trends Amplif; 2001 Jun; 5(2):35-68. PubMed ID: 25425897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges and recent developments in hearing aids. Part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies.
    Chung K
    Trends Amplif; 2004; 8(4):125-64. PubMed ID: 15735871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive Mechanical Stabilization of a Free-Floating Fully Implantable Hearing Aid.
    Einger TM; Koch M; Bornitz M; Zahnert T
    Otol Neurotol; 2016 Oct; 37(9):e377-83. PubMed ID: 27631662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feedback path variability modeling for robust hearing aids.
    Rafaely B; Roccasalva-Firenze M; Payne E
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2665-73. PubMed ID: 10830388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of Adaptive Noise Cancellation with Normalized Last-Mean-Square Based on the Signal-to-Noise Ratio of Lung and Heart Sound Separation.
    Al-Naggar NQ; Al-Udyni MH
    J Healthc Eng; 2018; 2018():9732762. PubMed ID: 30123445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavioral assessment of adaptive feedback equalization in a digital hearing aid.
    French-St George M; Wood DJ; Engebretson AM
    J Rehabil Res Dev; 1993; 30(1):17-25. PubMed ID: 8263825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Howling Detection and Suppression Based on Segmented Notch Filtering.
    Li Y; Huang X; Zheng Y; Gao Z; Kou L; Wan J
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Echo State Network-Based Backstepping Adaptive Iterative Learning Control for Strict-Feedback Systems: An Error-Tracking Approach.
    Chen Q; Shi H; Sun M
    IEEE Trans Cybern; 2020 Jul; 50(7):3009-3022. PubMed ID: 31425136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracting the invariant model from the feedback paths of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2011 Jul; 130(1):350-63. PubMed ID: 21786904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.