These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34449783)

  • 1. Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions.
    Yin X; Liu Y; Zhang J; Shen Y; Yan L
    PLoS One; 2021; 16(8):e0256108. PubMed ID: 34449783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogenization of Maxwell's equations in periodic composites: boundary effects and dispersion relations.
    Markel VA; Schotland JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066603. PubMed ID: 23005233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservative finite-difference scheme for the problem of THz pulse interaction with multilevel layer covered by disordered structure based on the density matrix formalism and 1D Maxwell's equation.
    Trofimov VA; Varentsova SA; Zakharova IG; Zagursky DY
    PLoS One; 2018; 13(8):e0201572. PubMed ID: 30070996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.
    Aguayo-Ortiz A; Mendoza S; Olvera D
    PLoS One; 2018; 13(4):e0195494. PubMed ID: 29659602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation with artificial boundary conditions.
    Trofimov VA; Trykin EM
    PLoS One; 2018; 13(10):e0206235. PubMed ID: 30379875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows.
    Zheng L; Guo Z; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.
    Punzalan FR; Kunieda Y; Amano A
    PLoS One; 2015; 10(9):e0136821. PubMed ID: 26356082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient nonstandard computer method to solve a compartmental epidemiological model for COVID-19 with vaccination and population migration.
    Herrera-Serrano JE; Macías-Díaz JE; Medina-Ramírez IE; Guerrero JA
    Comput Methods Programs Biomed; 2022 Jun; 221():106920. PubMed ID: 35687996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the convergence of a high-accuracy compact conservative scheme for the modified regularized long-wave equation.
    Pan X; Zhang L
    Springerplus; 2016; 5():474. PubMed ID: 27217989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence analysis of various factorization rules in the Fourier-Bessel basis for solving Maxwell equations using modal methods.
    Dems M
    Opt Express; 2021 Feb; 29(3):4378-4391. PubMed ID: 33771017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion.
    Potravkin NN; Perezhogin IA; Makarov VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056706. PubMed ID: 23214905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving the parquet equations for the Hubbard model beyond weak coupling.
    Tam KM; Fotso H; Yang SX; Lee TW; Moreno J; Ramanujam J; Jarrell M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013311. PubMed ID: 23410464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A uniformly convergent numerical scheme for solving singularly perturbed differential equations with large spatial delay.
    Ejere AH; Duressa GF; Woldaregay MM; Dinka TG
    SN Appl Sci; 2022; 4(12):324. PubMed ID: 36405546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate series solution of nonlinear singular boundary value problems arising in physiology.
    Singh R; Kumar J; Nelakanti G
    ScientificWorldJournal; 2014; 2014():945872. PubMed ID: 24707221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations.
    Portier B; Pardo F; Bouchon P; Haïdar R; Pelouard JL
    J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):573-81. PubMed ID: 23595315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitted computational method for solving singularly perturbed small time lag problem.
    Tesfaye SK; Woldaregay MM; Dinka TG; Duressa GF
    BMC Res Notes; 2022 Oct; 15(1):318. PubMed ID: 36221103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.