BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34450043)

  • 1. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition.
    Xiao R; Wang S; Han R; Li Z; Gabel C; Mukherjee IA; Chang L
    Mol Cell; 2021 Nov; 81(21):4457-4466.e5. PubMed ID: 34450043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the holo CRISPR RNA-guided transposon integration complex.
    Park JU; Tsai AW; Rizo AN; Truong VH; Wellner TX; Schargel RD; Kellogg EH
    Nature; 2023 Jan; 613(7945):775-782. PubMed ID: 36442503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
    Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G
    Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the miniature type V-F CRISPR-Cas effector enzyme.
    Takeda SN; Nakagawa R; Okazaki S; Hirano H; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Nishimasu H; Nureki O
    Mol Cell; 2021 Feb; 81(3):558-570.e3. PubMed ID: 33333018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for mismatch surveillance by CRISPR-Cas9.
    Bravo JPK; Liu MS; Hibshman GN; Dangerfield TL; Jung K; McCool RS; Johnson KA; Taylor DW
    Nature; 2022 Mar; 603(7900):343-347. PubMed ID: 35236982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector.
    Wang S; Gabel C; Siddique R; Klose T; Chang L
    Cell; 2023 Sep; 186(19):4204-4215.e19. PubMed ID: 37557170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM structure of the transposon-associated TnpB enzyme.
    Nakagawa R; Hirano H; Omura SN; Nety S; Kannan S; Altae-Tran H; Yao X; Sakaguchi Y; Ohira T; Wu WY; Nakayama H; Shuto Y; Tanaka T; Sano FK; Kusakizako T; Kise Y; Itoh Y; Dohmae N; van der Oost J; Suzuki T; Zhang F; Nureki O
    Nature; 2023 Apr; 616(7956):390-397. PubMed ID: 37020030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria.
    Hsieh SC; Peters JE
    Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM.
    Park JU; Tsai AW; Chen TH; Peters JE; Kellogg EH
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2202590119. PubMed ID: 35914146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.
    Zhu X; Clarke R; Puppala AK; Chittori S; Merk A; Merrill BJ; Simonović M; Subramaniam S
    Nat Struct Mol Biol; 2019 Aug; 26(8):679-685. PubMed ID: 31285607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition.
    Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE
    Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system.
    Zhang B; Lin J; Perčulija V; Li Y; Lu Q; Chen J; Ouyang S
    Nucleic Acids Res; 2022 Nov; 50(20):11820-11833. PubMed ID: 36321657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3.
    Carabias A; Fuglsang A; Temperini P; Pape T; Sofos N; Stella S; Erlendsson S; Montoya G
    Nat Commun; 2021 Jul; 12(1):4476. PubMed ID: 34294706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.