BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34450043)

  • 21. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the type V-C CRISPR-Cas effector enzyme.
    Kurihara N; Nakagawa R; Hirano H; Okazaki S; Tomita A; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Scott DA; Nishimasu H; Nureki O
    Mol Cell; 2022 May; 82(10):1865-1877.e4. PubMed ID: 35366394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9 Structures and Mechanisms.
    Jiang F; Doudna JA
    Annu Rev Biophys; 2017 May; 46():505-529. PubMed ID: 28375731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Engineering by RNA-Guided Transposition for
    Arévalo S; Pérez Rico D; Abarca D; Dijkhuizen LW; Sarasa-Buisan C; Lindblad P; Flores E; Nierzwicki-Bauer S; Schluepmann H
    ACS Synth Biol; 2024 Mar; 13(3):901-912. PubMed ID: 38445989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-Length Model of SaCas9-sgRNA-DNA Complex in Cleavage State.
    Du W; Zhu H; Qian J; Xue D; Zheng S; Huang Q
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674715
    [No Abstract]   [Full Text] [Related]  

  • 26. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9.
    Schuler G; Hu C; Ke A
    Science; 2022 Jun; 376(6600):1476-1481. PubMed ID: 35617371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity.
    Wu T; Liu C; Zou S; Lyu R; Yang B; Yan H; Zhao M; Tang W
    Nat Chem Biol; 2023 Nov; 19(11):1384-1393. PubMed ID: 37400536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA interference states of the hypercompact CRISPR-CasΦ effector.
    Pausch P; Soczek KM; Herbst DA; Tsuchida CA; Al-Shayeb B; Banfield JF; Nogales E; Doudna JA
    Nat Struct Mol Biol; 2021 Aug; 28(8):652-661. PubMed ID: 34381246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme.
    Omura SN; Nakagawa R; Südfeld C; Villegas Warren R; Wu WY; Hirano H; Laffeber C; Kusakizako T; Kise Y; Lebbink JHG; Itoh Y; van der Oost J; Nureki O
    Nat Struct Mol Biol; 2023 Aug; 30(8):1172-1182. PubMed ID: 37460897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CasX enzymes comprise a distinct family of RNA-guided genome editors.
    Liu JJ; Orlova N; Oakes BL; Ma E; Spinner HB; Baney KLM; Chuck J; Tan D; Knott GJ; Harrington LB; Al-Shayeb B; Wagner A; Brötzmann J; Staahl BT; Taylor KL; Desmarais J; Nogales E; Doudna JA
    Nature; 2019 Feb; 566(7743):218-223. PubMed ID: 30718774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of target site selection by type V-K CRISPR-associated transposases.
    George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH
    Science; 2023 Nov; 382(6672):eadj8543. PubMed ID: 37972161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
    Huai C; Li G; Yao R; Zhang Y; Cao M; Kong L; Jia C; Yuan H; Chen H; Lu D; Huang Q
    Nat Commun; 2017 Nov; 8(1):1375. PubMed ID: 29123204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for target site selection in RNA-guided DNA transposition systems.
    Park JU; Tsai AW; Mehrotra E; Petassi MT; Hsieh SC; Ke A; Peters JE; Kellogg EH
    Science; 2021 Aug; 373(6556):768-774. PubMed ID: 34385391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA Targeting by a Minimal CRISPR RNA-Guided Cascade.
    Hochstrasser ML; Taylor DW; Kornfeld JE; Nogales E; Doudna JA
    Mol Cell; 2016 Sep; 63(5):840-51. PubMed ID: 27588603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9.
    Kato K; Okazaki S; Kannan S; Altae-Tran H; Esra Demircioglu F; Isayama Y; Ishikawa J; Fukuda M; Macrae RK; Nishizawa T; Makarova KS; Koonin EV; Zhang F; Nishimasu H
    Nat Commun; 2022 Nov; 13(1):6719. PubMed ID: 36344504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM.
    Tang LC; Gu F
    Yi Chuan; 2020 Mar; 42(3):236-249. PubMed ID: 32217510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.