These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34450262)

  • 1. Hierarchical modelling of functional brain networks in population and individuals from big fMRI data.
    Farahibozorg SR; Bijsterbosch JD; Gong W; Jbabdi S; Smith SM; Harrison SJ; Woolrich MW
    Neuroimage; 2021 Nov; 243():118513. PubMed ID: 34450262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitudes of resting-state functional networks - investigation into their correlates and biophysical properties.
    Lee S; Bijsterbosch JD; Almagro FA; Elliott L; McCarthy P; Taschler B; Sala-Llonch R; Beckmann CF; Duff EP; Smith SM; Douaud G
    Neuroimage; 2023 Jan; 265():119779. PubMed ID: 36462729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting-State Networks of Awake Adolescent and Adult Squirrel Monkeys Using Ultra-High Field (9.4 T) Functional Magnetic Resonance Imaging.
    Yassin W; de Moura FB; Withey SL; Cao L; Kangas BD; Bergman J; Kohut SJ
    eNeuro; 2024 May; 11(5):. PubMed ID: 38627065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of functional connectivity within and among the resting-state networks in anesthetized rhesus monkeys.
    Rao B; Xu D; Zhao C; Wang S; Li X; Sun W; Gang Y; Fang J; Xu H
    Neuroimage; 2021 Nov; 242():118473. PubMed ID: 34390876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-wide functional diffuse optical tomography of resting state networks.
    Khan AF; Zhang F; Yuan H; Ding L
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33946052
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterisation of Haemodynamic Activity in Resting State Networks by Fractal Analysis.
    Porcaro C; Mayhew SD; Marino M; Mantini D; Bagshaw AP
    Int J Neural Syst; 2020 Dec; 30(12):2050061. PubMed ID: 33034533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presurgical localization and spatial shift of resting state networks in patients with brain metastases.
    Ding JR; Zhu F; Hua B; Xiong X; Wen Y; Ding Z; Thompson PM
    Brain Imaging Behav; 2019 Apr; 13(2):408-420. PubMed ID: 29611075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity.
    Tüshaus L; Balsters JH; Schläpfer A; Brandeis D; O'Gorman Tuura R; Achermann P
    Brain Topogr; 2017 Nov; 30(6):757-773. PubMed ID: 28712063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data Structure for Real-Time Aggregation Queries of Big Brain Networks.
    Ganglberger FJ; Kaczanowska J; Haubensak W; Bühler K
    Neuroinformatics; 2020 Jan; 18(1):131-149. PubMed ID: 31240560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data.
    Lukemire J; Wang Y; Verma A; Guo Y
    J Neurosci Methods; 2020 Jul; 341():108726. PubMed ID: 32360892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive remediation and brain connectivity: A resting-state fMRI study in patients with schizophrenia.
    Penadés R; Segura B; Inguanzo A; García-Rizo C; Catalán R; Masana G; Bernardo M; Junqué C
    Psychiatry Res Neuroimaging; 2020 Sep; 303():111140. PubMed ID: 32693320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clusterwise Independent Component Analysis (C-ICA): Using fMRI resting state networks to cluster subjects and find neurofunctional subtypes.
    Durieux J; Rombouts SARB; de Vos F; Koini M; Wilderjans TF
    J Neurosci Methods; 2022 Dec; 382():109718. PubMed ID: 36209940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.