These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 34450741)

  • 21. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.
    Han D; Mulyana B; Stankovic V; Cheng S
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and development of a sensorized cylindrical object for grasping assessment.
    Cordella F; Taffoni F; Raiano L; Carpino G; Pantoni M; Zollo L; Schena E; Guglielmelli E; Formica D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3366-3369. PubMed ID: 28269025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
    Spiers AJ; Liarokapis MV; Calli B; Dollar AM
    IEEE Trans Haptics; 2016; 9(2):207-20. PubMed ID: 26829804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning Playing Piano with Bionic-Constrained Diffusion Policy for Anthropomorphic Hand.
    Yang Y; Wang Z; Xing D; Wang P
    Cyborg Bionic Syst; 2024; 5():0104. PubMed ID: 38765638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid Pressure Monitoring-Based Strategy for Delicate Grasping of Fragile Objects by A Robotic Hand with Fluid Fingertips.
    Nishimura T; Suzuki Y; Tsuji T; Watanabe T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation into reducing anthropomorphic hand degrees of freedom while maintaining human hand grasping functions.
    Zarzoura M; Del Moral P; Awad MI; Tolbah FA
    Proc Inst Mech Eng H; 2019 Feb; 233(2):279-292. PubMed ID: 30599790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex manipulation with a simple robotic hand through contact breaking and caging.
    Bircher WG; Morgan AS; Dollar AM
    Sci Robot; 2021 May; 6(54):. PubMed ID: 34043534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots.
    Elangovan N; Chang CM; Gao G; Liarokapis M
    Front Robot AI; 2022; 9():808154. PubMed ID: 35546901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning-based control framework for dynamic contact processes in humanoid grasping.
    Cheng S; Jin Y; Wang H
    Front Neurorobot; 2024; 18():1349752. PubMed ID: 38481603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information.
    Arapi V; Della Santina C; Bacciu D; Bianchi M; Bicchi A
    Front Neurorobot; 2018; 12():86. PubMed ID: 30618707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep reinforcement learning in continuous action space for autonomous robotic surgery.
    Shahkoo AA; Abin AA
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):423-431. PubMed ID: 36383302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Anthropomorphic Finger Design With a Novel Friction Clutch for Achieving Human-Like Reach-and-Grasp Movements.
    Yong X; Zhu S; Sun Z; Chen S; Togo S; Yokoi H; Jing X; Li G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4942-4953. PubMed ID: 38060359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuro-inspired continual anthropomorphic grasping.
    Li W; Wei W; Wang P
    iScience; 2023 Jun; 26(6):106735. PubMed ID: 37275525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive critic neural network-based object grasping control using a three-finger gripper.
    Jagannathan S; Galan G
    IEEE Trans Neural Netw; 2004 Mar; 15(2):395-407. PubMed ID: 15384532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human-Like Endtip Stiffness Modulation Inspires Dexterous Manipulation With Robotic Hands.
    Shafer A; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1138-1146. PubMed ID: 35420986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.