These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34450801)

  • 1. A Flexible Multimodal Sole Sensor for Legged Robot Sensing Complex Ground Information during Locomotion.
    Xu Y; Wang Z; Hao W; Zhao W; Lin W; Jin B; Ding N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of tail stiffness on a sprawling quadruped locomotion.
    Buckley J; Chikere N; Ozkan-Aydin Y
    Front Robot AI; 2023; 10():1198749. PubMed ID: 37692530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning robust perceptive locomotion for quadrupedal robots in the wild.
    Miki T; Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2022 Jan; 7(62):eabk2822. PubMed ID: 35044798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legged locomotion in resistive terrains.
    Gart S; Alicea R; Gao W; Pusey J; Nicholson JV; Clark JE
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Calibration of Humanoid Robot Flexible Tactile Skin for Human-Robot Interaction.
    Chefchaouni Moussaoui S; Cisneros-Limón R; Kaminaga H; Benallegue M; Nobeshima T; Kanazawa S; Kanehiro F
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body-terrain interaction affects large bump traversal of insects and legged robots.
    Gart SW; Li C
    Bioinspir Biomim; 2018 Feb; 13(2):026005. PubMed ID: 29394159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the biomimetic design of agile-robot legs.
    Garcia E; Arevalo JC; Muñoz G; Gonzalez-de-Santos P
    Sensors (Basel); 2011; 11(12):11305-34. PubMed ID: 22247667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion.
    Dong H; Yang H; Ding S; Li T; Yu H
    Soft Robot; 2022 Dec; 9(6):1198-1209. PubMed ID: 35671518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrain Adaptability and Optimum Contact Stiffness of Vibro-bot with Arrayed Soft Legs.
    Yan Y; Shui L; Liu S; Liu Z; Liu Y
    Soft Robot; 2022 Oct; 9(5):981-990. PubMed ID: 34842452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion.
    Shin WD; Park J; Park HW
    Bioinspir Biomim; 2019 Jul; 14(5):056009. PubMed ID: 31212268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion.
    Goldsmith CA; Haustein M; Büschges A; Szczecinski NS
    Bioinspir Biomim; 2024 Oct; 19(6):. PubMed ID: 39332442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile surface classification for limbed robots using a pressure sensitive robot skin.
    Shill JJ; Collins EG; Coyle E; Clark J
    Bioinspir Biomim; 2015 Feb; 10(1):016012. PubMed ID: 25642694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro.
    De Luca A; Muratore L; Raghavan VS; Antonucci D; Tsagarakis NG
    Front Robot AI; 2021; 8():721001. PubMed ID: 34869611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and robust localization for walking robots fusing kinematics, inertial, vision and LIDAR.
    Fallon M
    Interface Focus; 2018 Aug; 8(4):20180015. PubMed ID: 29951194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.
    Zhu H; Wang D; Boyd N; Zhou Z; Ruan L; Zhang A; Ding N; Zhao Y; Luo J
    Front Robot AI; 2021; 8():724138. PubMed ID: 34765648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater legged robotics: review and perspectives.
    Picardi G; Astolfi A; Chatzievangelou D; Aguzzi J; Calisti M
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36863018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.