These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34450854)

  • 1. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2017-2025. PubMed ID: 33025366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Technical Skill Assessment and Mental Load Evaluation in Robot-Assisted Minimally Invasive Surgery.
    Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920087
    [No Abstract]   [Full Text] [Related]  

  • 7. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set II: learning curve analysis.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):589-595. PubMed ID: 33723706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques.
    Anh NX; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105234. PubMed ID: 31794913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SATR-DL: Improving Surgical Skill Assessment And Task Recognition In Robot-Assisted Surgery With Deep Neural Networks.
    Wang Z; Fey AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1793-1796. PubMed ID: 30440742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance.
    Khalid S; Goldenberg M; Grantcharov T; Taati B; Rudzicz F
    JAMA Netw Open; 2020 Mar; 3(3):e201664. PubMed ID: 32227178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Video-based surgical skill assessment using 3D convolutional neural networks.
    Funke I; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1217-1225. PubMed ID: 31104257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training.
    Nagyné Elek R; Haidegger T
    J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural network architecture for automated soft surgical skills evaluation using objective structured assessment of technical skills criteria.
    Benmansour M; Malti A; Jannin P
    Int J Comput Assist Radiol Surg; 2023 May; 18(5):929-937. PubMed ID: 36694051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of real-time virtual reality-based teaching cues on learning needle passing for robot-assisted minimally invasive surgery: a randomized controlled trial.
    Malpani A; Vedula SS; Lin HC; Hager GD; Taylor RH
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1187-1194. PubMed ID: 32385598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of executional and procedural errors in dry-lab robotic surgery experiments.
    Hutchinson K; Li Z; Cantrell LA; Schenkman NS; Alemzadeh H
    Int J Med Robot; 2022 Jun; 18(3):e2375. PubMed ID: 35114732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing fine-grained details for video-based automation of suturing skills assessment.
    Hung AJ; Bao R; Sunmola IO; Huang DA; Nguyen JH; Anandkumar A
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):545-552. PubMed ID: 36282465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Road to automating robotic suturing skills assessment: Battling mislabeling of the ground truth.
    Hung AJ; Rambhatla S; Sanford DI; Pachauri N; Vanstrum E; Nguyen JH; Liu Y
    Surgery; 2022 Apr; 171(4):915-919. PubMed ID: 34538647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.