BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34450861)

  • 1. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking.
    Try P; Schöllmann S; Wöhle L; Gebhard M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous Multi-Sensory Robotic Assistant for a Drinking Task.
    Goldau FF; Shastha TK; Kyrarini M; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():210-216. PubMed ID: 31374632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Analysis of a Head and Eye Motion-Based Control Interface for Assistive Robots.
    Stalljann S; Wöhle L; Schäfer J; Gebhard M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Tongue Robot Mapping for Paralyzed Individuals Improves the Functional Performance of Tongue-Based Robotic Assistance.
    Mohammadi M; Knoche H; Struijk LNSA
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2552-2562. PubMed ID: 33513095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
    Grice PM; Killpack MD; Jain A; Vaish S; Hawke J; Kemp CC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650464. PubMed ID: 24187281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Assistive Robotic Arm For People With Physical Disabilities Of The Extremities: HOG Based Food Detection.
    Gushi S; Higa H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1801-1804. PubMed ID: 30440744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile Robotic Balance Assistant (MRBA): a gait assistive and fall intervention robot for daily living.
    Li L; Foo MJ; Chen J; Tan KY; Cai J; Swaminathan R; Chua KSG; Wee SK; Kuah CWK; Zhuo H; Ang WT
    J Neuroeng Rehabil; 2023 Mar; 20(1):29. PubMed ID: 36859286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted feeding: A technical application that combines learning from demonstration and visual interaction.
    Liu F; Xu P; Yu H
    Technol Health Care; 2021; 29(1):187-192. PubMed ID: 33074204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing.
    Erickson Z; Clever HM; Gangaram V; Turk G; Liu CK; Kemp CC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():224-231. PubMed ID: 31374634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N
    J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of daily activities by older adults with dementia: the role of an assistive robot.
    Begum M; Wang R; Huq R; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650405. PubMed ID: 24187224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mix Frame Visual Servo Control Framework for Autonomous Assistive Robotic Arms.
    Arif Z; Fu Y
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent lead: a novel HRI sensor for guide robots.
    Cho KB; Lee BH
    Sensors (Basel); 2012; 12(6):8301-18. PubMed ID: 22969401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.