These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34450878)

  • 1. Selective Subject Pooling Strategy to Improve Model Generalization for a Motor Imagery BCI.
    Won K; Kwon M; Ahn M; Jun SC
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A shallow mirror transformer for subject-independent motor imagery BCI.
    Luo J; Wang Y; Xia S; Lu N; Ren X; Shi Z; Hei X
    Comput Biol Med; 2023 Sep; 164():107254. PubMed ID: 37499295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender.
    Cantillo-Negrete J; Gutierrez-Martinez J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D
    Biomed Eng Online; 2014 Dec; 13():158. PubMed ID: 25476924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-quality training data detection method of EEG signals for motor imagery BCI system.
    Ouyang R; Jin Z; Tang S; Fan C; Wu X
    J Neurosci Methods; 2022 Jul; 376():109607. PubMed ID: 35483505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs.
    Luo J; Shi W; Lu N; Wang J; Chen H; Wang Y; Lu X; Wang X; Hei X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33540387
    [No Abstract]   [Full Text] [Related]  

  • 6. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG datasets for motor imagery brain-computer interface.
    Cho H; Ahn M; Ahn S; Kwon M; Jun SC
    Gigascience; 2017 Jul; 6(7):1-8. PubMed ID: 28472337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Subject-Independent Brain-Computer Interface Framework Based on Supervised Autoencoder.
    Ayoobi N; Sadeghian EB
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():218-221. PubMed ID: 36086482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification.
    Kim DH; Shin DH; Kam TE
    Front Hum Neurosci; 2023; 17():1194751. PubMed ID: 37256201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating effects of different artefact types on motor imagery BCI.
    Frolich L; Winkler I; Muller KR; Samek W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1942-5. PubMed ID: 26736664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach.
    Hosni SM; Borgheai SB; McLinden J; Shahriari Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating EEG and fNIRS Patterns to Evaluate Cortical Excitability and MI-BCI Performance During Motor Training.
    Wang Z; Yang L; Zhou Y; Chen L; Gu B; Liu S; Xu M; He F; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2872-2882. PubMed ID: 37262121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface.
    Singh A; Hussain AA; Lal S; Guesgen HW
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.
    Jeunet C; N'Kaoua B; Subramanian S; Hachet M; Lotte F
    PLoS One; 2015; 10(12):e0143962. PubMed ID: 26625261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing calibration time in motor imagery-based BCIs by data alignment and empirical mode decomposition.
    Xiong W; Wei Q
    PLoS One; 2022; 17(2):e0263641. PubMed ID: 35134085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):60-68. PubMed ID: 29324403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.