These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34450905)

  • 1. Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope.
    Gutiérrez-Cano JD; Catalá-Civera JM; Plaza-González PJ; Peñaranda-Foix FL
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope.
    Gutiérrez-Cano JD; Catalá-Civera JM; López-Buendía AM; Plaza-González PJ; Penaranda-Foix FL
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency dielectric properties distribution of BiFeO3 thin film using near-field microwave microscopy.
    Zhang XY; Wang XC; Xu F; Ma YG; Ong CK
    Rev Sci Instrum; 2009 Nov; 80(11):114701. PubMed ID: 19947745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope.
    Gregory AP; Blackburn JF; Hodgetts TE; Clarke RN; Lees K; Plint S; Dimitrakis GA
    Ultramicroscopy; 2017 Jan; 172():65-74. PubMed ID: 27865149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope.
    Gregory AP; Blackburn JF; Lees K; Clarke RN; Hodgetts TE; Hanham SM; Klein N
    Ultramicroscopy; 2016 Feb; 161():137-145. PubMed ID: 26686660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Field Resonance Microwave Sounding to Study Dielectric Properties of Different Skin Areas (Experimental Study).
    Martusevich АK; Epishkina АА; Golygina ЕS; Tuzhilkin АN; Fedotova АS; Galka АG
    Sovrem Tekhnologii Med; 2021; 12(5):57-60. PubMed ID: 34796005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel STM-assisted microwave microscope with capacitance and loss imaging capability.
    Imtiaz A; Anlage SM
    Ultramicroscopy; 2003 Apr; 94(3-4):209-16. PubMed ID: 12524191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric spectroscopy of Baijiu over 2-20 GHz using an open-ended coaxial probe.
    Li Z; Haigh A; Wang P; Soutis C; Gibson A
    J Food Sci; 2021 Jun; 86(6):2513-2524. PubMed ID: 33908622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric properties of Mexican sauces for microwave-assisted pasteurization process.
    Hernandez-Gomez ES; Olvera-Cervantes JL; Sosa-Morales ME; Corona-Vazquez B; Corona-Chavez A; Lujan-Hidalgo MC; Kataria TK
    J Food Sci; 2021 Jan; 86(1):112-119. PubMed ID: 33368317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.
    Biagi MC; Fabregas R; Gramse G; Van Der Hofstadt M; Juárez A; Kienberger F; Fumagalli L; Gomila G
    ACS Nano; 2016 Jan; 10(1):280-8. PubMed ID: 26643251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband dielectric microwave microscopy on micron length scales.
    Tselev A; Anlage SM; Ma Z; Melngailis J
    Rev Sci Instrum; 2007 Apr; 78(4):044701. PubMed ID: 17477685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed Tomography-Based Modeling of Water Vapor-Induced Changes in Permittivity During Microwave Ablation.
    Etoz S; Brace CL
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2427-2433. PubMed ID: 31880538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric properties of certain biological materials at microwave frequencies.
    Kumar SB; Mathew KT; Raveendranath U; Augustine P
    J Microw Power Electromagn Energy; 2001; 36(2):67-75. PubMed ID: 15040525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of different methods on drying root canal by near-field microwave detection system].
    Wang JS; Wang PY; Liang YH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Dec; 51(6):1124-1129. PubMed ID: 31848516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system.
    Kim M; Kim K
    Rev Sci Instrum; 2012 Mar; 83(3):034703. PubMed ID: 22462944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quick accurate method for measuring the microwave dielectric properties of small tissue samples.
    Land DV; Campbell AM
    Phys Med Biol; 1992 Jan; 37(1):183-92. PubMed ID: 1741423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traceable Nanoscale Measurements of High Dielectric Constant by Scanning Microwave Microscopy.
    Richert D; Morán-Meza J; Kaja K; Delvallée A; Allal D; Gautier B; Piquemal F
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct mapping of the electric permittivity of heterogeneous non-planar thin films at gigahertz frequencies by scanning microwave microscopy.
    Biagi MC; Badino G; Fabregas R; Gramse G; Fumagalli L; Gomila G
    Phys Chem Chem Phys; 2017 Feb; 19(5):3884-3893. PubMed ID: 28106185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local complex permittivity measurements of porcine skin tissue in the frequency range from 1 GHz to 15 GHz by evanescent microscopy.
    Kleismit RA; Kozlowski G; Foy BD; Hull BE; Kazimierczuk M
    Phys Med Biol; 2009 Feb; 54(3):699-713. PubMed ID: 19131676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.