These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34450984)
1. Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition. Grande-Fidalgo A; Calpe J; Redón M; Millán-Navarro C; Soria-Olivas E Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450984 [TBL] [Abstract][Full Text] [Related]
2. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387 [TBL] [Abstract][Full Text] [Related]
3. 12-Lead ECG Reconstruction Based on Data From the First Limb Lead. Savostin A; Koshekov K; Ritter Y; Savostina G; Ritter D Cardiovasc Eng Technol; 2024 Jun; 15(3):346-358. PubMed ID: 38424391 [TBL] [Abstract][Full Text] [Related]
4. Surface Electrocardiogram Recording: Baseline 12-lead and Ambulatory Electrocardiogram Monitoring. Padeletti M; Bagliani G; De Ponti R; Leonelli FM; Locati ET Card Electrophysiol Clin; 2019 Jun; 11(2):189-201. PubMed ID: 31084846 [TBL] [Abstract][Full Text] [Related]
5. Application of Convolutional Neural Network for Decoding of 12-Lead Electrocardiogram from a Frequency-Modulated Audio Stream (Sonified ECG). Krasteva V; Iliev I; Tabakov S Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544146 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of 12-lead ECG Using a Single-patch Device. Lee HJ; Lee DS; Kwon HB; Kim DY; Park KS Methods Inf Med; 2017 Aug; 56(4):319-327. PubMed ID: 28451687 [TBL] [Abstract][Full Text] [Related]
7. Optimal Lead Position in Patch-Type Monitoring Sensors for Reconstructing 12-Lead ECG Signals with Universal Transformation Coefficient. Lee D; Kwon H; Lee H; Seo C; Park K Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053945 [TBL] [Abstract][Full Text] [Related]
8. Feasibility and validity of using deep learning to reconstruct 12-lead ECG from three‑lead signals. Wang LH; Zou YY; Xie CX; Yang T; Abu PAR J Electrocardiol; 2024; 84():27-31. PubMed ID: 38479052 [TBL] [Abstract][Full Text] [Related]
9. A novel convolutional neural network for reconstructing surface electrocardiograms from intracardiac electrograms and vice versa. Banta A; Cosentino R; John MM; Post A; Buchan S; Razavi M; Aazhang B Artif Intell Med; 2021 Aug; 118():102135. PubMed ID: 34412835 [TBL] [Abstract][Full Text] [Related]
10. AECG-DecompNet: abdominal ECG signal decomposition through deep-learning model. Rasti-Meymandi A; Ghaffari A Physiol Meas; 2021 May; 42(4):. PubMed ID: 33706298 [No Abstract] [Full Text] [Related]
11. Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings. Mateo J; Rieta JJ J Med Eng Technol; 2012 Feb; 36(2):90-101. PubMed ID: 22268996 [TBL] [Abstract][Full Text] [Related]
12. A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: application to self-care. Atoui H; Fayn J; Rubel P IEEE Trans Inf Technol Biomed; 2010 May; 14(3):883-90. PubMed ID: 20378474 [TBL] [Abstract][Full Text] [Related]
13. Artificial neural network-based classification of body movements in ambulatory ECG signal. Darji ST; Kher RK J Med Eng Technol; 2013 Nov; 37(8):535-40. PubMed ID: 24131270 [TBL] [Abstract][Full Text] [Related]
14. A lightweight piecewise linear synthesis method for standard 12-lead ECG signals based on adaptive region segmentation. Zhu H; Pan Y; Cheng KT; Huan R PLoS One; 2018; 13(10):e0206170. PubMed ID: 30339673 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of the ambulatory ECG monitoring system Cardio-Data Mk4 in detecting exercise-induced myocardial ischaemia. Brüggemann T; Andresen D; Jereczek M; Schröder R Clin Phys Physiol Meas; 1989 Aug; 10(3):253-8. PubMed ID: 2627766 [TBL] [Abstract][Full Text] [Related]
16. Surface electrocardiogram reconstruction from intracardiac electrograms using a dynamic time delay artificial neural network. Porée F; Kachenoura A; Carrault G; Dal Molin R; Mabo P; Hernandez AI IEEE Trans Biomed Eng; 2013 Jan; 60(1):106-14. PubMed ID: 23086502 [TBL] [Abstract][Full Text] [Related]
17. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Hannun AY; Rajpurkar P; Haghpanahi M; Tison GH; Bourn C; Turakhia MP; Ng AY Nat Med; 2019 Jan; 25(1):65-69. PubMed ID: 30617320 [TBL] [Abstract][Full Text] [Related]
18. The Reconstruction of a 12-Lead Electrocardiogram from a Reduced Lead Set Using a Focus Time-Delay Neural Network. Smith GH; Van den Heever DJ; Swart W Acta Cardiol Sin; 2021 Jan; 37(1):47-57. PubMed ID: 33488027 [TBL] [Abstract][Full Text] [Related]
19. A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System. Wang LH; Zhang W; Guan MH; Jiang SY; Fan MH; Abu PAR; Chen CA; Chen SL Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744095 [TBL] [Abstract][Full Text] [Related]
20. Reconstruction of 12-Lead Electrocardiogram from a Three-Lead Patch-Type Device Using a LSTM Network. Sohn J; Yang S; Lee J; Ku Y; Kim HC Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32526828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]