BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34451006)

  • 21. Assessing the role of SWIR band in detecting agricultural crop stress: a case study of Raichur district, Karnataka, India.
    Swathandran S; Aslam MAM
    Environ Monit Assess; 2019 Jun; 191(7):442. PubMed ID: 31203445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks.
    Sharma A; Liu X; Yang X
    Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Monitoring of Saposhnikovia divaricate planting area based on texture and pop information in Naiman banner].
    Jia JY; Cao R; Zhang XB; Shi TT; Yang M; Li MH
    Zhongguo Zhong Yao Za Zhi; 2019 Oct; 44(19):4111-4115. PubMed ID: 31872685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping seagrasses on the basis of Sentinel-2 images under tidal change.
    Li Y; Bai J; Chen S; Chen B; Zhang L
    Mar Environ Res; 2023 Mar; 185():105880. PubMed ID: 36682175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinguishing Planting Structures of Different Complexity from UAV Multispectral Images.
    Ma Q; Han W; Huang S; Dong S; Li G; Chen H
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.
    Zhou T; Pan J; Zhang P; Wei S; Han T
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Winter wheat growth spatial variation study based on temporal airborne high-spectrum images].
    Song XY; Wang JH; Yan GJ; Huang WJ; Liu LY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1820-4. PubMed ID: 20827978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating Early Growth Information to Monitor Winter Wheat Powdery Mildew Using Multi-Temporal Landsat-8 Imagery.
    Ma H; Jing Y; Huang W; Shi Y; Dong Y; Zhang J; Liu L
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Extracting Paeonia lactiflora planted area in Dangshan of Anhui province based on ZY-3 remote sensing image].
    Yang M; Chen LL; Zhang XB; Zhao YJ; Shi TT; Cheng ME; Peng HS
    Zhongguo Zhong Yao Za Zhi; 2019 Oct; 44(19):4101-4106. PubMed ID: 31872683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-automatic normalization of multitemporal remote images based on vegetative pseudo-invariant features.
    Garcia-Torres L; Caballero-Novella JJ; Gómez-Candón D; De-Castro AI
    PLoS One; 2014; 9(3):e91275. PubMed ID: 24604031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early-season and refined mapping of winter wheat based on phenology algorithms - a case of Shandong, China.
    Liu X; Li X; Gao L; Zhang J; Qin D; Wang K; Li Z
    Front Plant Sci; 2023; 14():1016890. PubMed ID: 37554555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment.
    Bukowiecki J; Rose T; Kage H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fusion of Different Image Sources for Improved Monitoring of Agricultural Plots.
    Moltó E
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal evolution of traditional soybean planting structure in Songnen Plain, China in 1996-2016.
    Liu H; Wu WB; Shen G; Huang Q
    Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3275-3282. PubMed ID: 30325152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Temporal stage and method selection of tree species classification based on GF-2 remote sensing image].
    Li Z; Zhang QY; Qiu XC; Peng DL
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4059-4070. PubMed ID: 31840450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery.
    Zarco-Tejada PJ; Hornero A; Hernández-Clemente R; Beck PSA
    ISPRS J Photogramm Remote Sens; 2018 Mar; 137():134-148. PubMed ID: 29551855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].
    Ma JH; Song KS; Wen ZD; Shao TT; Li BN; Qi C
    Ying Yong Sheng Tai Xue Bao; 2015 Nov; 26(11):3451-6. PubMed ID: 26915202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.].
    Zuo L; Wang HJ; Liu RG; Liu Y; Shang R
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):599-606. PubMed ID: 29692076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research on extraction of ginseng planting distribution information based on object-oriented classification--by case study of Fusong country in Jilin].
    Shi TT; Zhang XB; Qu XB; Qiu ZD; Zhang Q; Guo LP; Huang LQ; Fu QY; Lv Z; Gong YL
    Zhongguo Zhong Yao Za Zhi; 2017 Nov; 42(22):4353-4357. PubMed ID: 29318834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.