These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34451019)
1. ARMA-Based Segmentation of Human Limb Motion Sequences. Mei F; Hu Q; Yang C; Liu L Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451019 [TBL] [Abstract][Full Text] [Related]
2. An Enhanced Joint Hilbert Embedding-Based Metric to Support Mocap Data Classification with Preserved Interpretability. Valencia-Marin CK; Pulgarin-Giraldo JD; Velasquez-Martinez LF; Alvarez-Meza AM; Castellanos-Dominguez G Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209582 [TBL] [Abstract][Full Text] [Related]
3. Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system. Bolink SA; Naisas H; Senden R; Essers H; Heyligers IC; Meijer K; Grimm B Med Eng Phys; 2016 Mar; 38(3):225-31. PubMed ID: 26711470 [TBL] [Abstract][Full Text] [Related]
4. Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net. Li YH; Putri WR; Aslam MS; Chang CC Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670827 [TBL] [Abstract][Full Text] [Related]
5. Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering. Xia G; Sun H; Feng L; Zhang G; Liu Y IEEE Trans Image Process; 2018 Jan.; 27(1):135-150. PubMed ID: 28809685 [TBL] [Abstract][Full Text] [Related]
6. Motion Recognition Based on Deep Learning and Human Joint Points. Wang J Comput Intell Neurosci; 2022; 2022():1826951. PubMed ID: 35592723 [TBL] [Abstract][Full Text] [Related]
7. Recognition of Upper Limb Action Intention Based on IMU. Cui JW; Li ZG; Du H; Yan BY; Lu PD Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101 [TBL] [Abstract][Full Text] [Related]
8. Motion Segmentation via Generalized Curvatures. Arn RT; Narayana P; Emerson T; Draper BA; Kirby M; Peterson C IEEE Trans Pattern Anal Mach Intell; 2019 Dec; 41(12):2919-2932. PubMed ID: 30222550 [TBL] [Abstract][Full Text] [Related]
9. Human Motion Capture Data Tailored Transform Coding. Junhui Hou ; Lap-Pui Chau ; Magnenat-Thalmann N; Ying He IEEE Trans Vis Comput Graph; 2015 Jul; 21(7):848-59. PubMed ID: 26357246 [TBL] [Abstract][Full Text] [Related]
10. Joint Optimization of Kinematics and Anthropometrics for Human Motion Denoising. Zhou L; Lannan N; Fan G IEEE Sens J; 2022 Mar; 22(5):4386-4399. PubMed ID: 35273470 [TBL] [Abstract][Full Text] [Related]
11. Human motion capture data compression by model-based indexing: a power aware approach. Chattopadhyay S; Bhandarkar SM; Li K IEEE Trans Vis Comput Graph; 2007; 13(1):5-14. PubMed ID: 17093331 [TBL] [Abstract][Full Text] [Related]
12. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units. Hafer JF; Provenzano SG; Kern KL; Agresta CE; Grant JA; Zernicke RF J Biomech; 2020 Jan; 99():109567. PubMed ID: 31916999 [TBL] [Abstract][Full Text] [Related]
13. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes. Hachaj T; Piekarczyk M; Ogiela MR Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29125560 [TBL] [Abstract][Full Text] [Related]
14. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors. Duan Y; Zhang X; Li Z Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983 [TBL] [Abstract][Full Text] [Related]
15. Human Motion Enhancement via Tobit Kalman Filter-Assisted Autoencoder. Lannan N; Zhou LE; Fan G IEEE Access; 2022; 10():29233-29251. PubMed ID: 36090467 [TBL] [Abstract][Full Text] [Related]
16. MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm. M M; P S Asian Pac J Cancer Prev; 2018 Nov; 19(11):3257-3263. PubMed ID: 30486629 [TBL] [Abstract][Full Text] [Related]
17. Dual-component model of respiratory motion based on the periodic autoregressive moving average (periodic ARMA) method. McCall KC; Jeraj R Phys Med Biol; 2007 Jun; 52(12):3455-66. PubMed ID: 17664554 [TBL] [Abstract][Full Text] [Related]
18. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation. Shi T; Jiang H; Zheng B Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449 [TBL] [Abstract][Full Text] [Related]
19. Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based Motion Prediction. Li M; Chen S; Zhao Y; Zhang Y; Wang Y; Tian Q IEEE Trans Image Process; 2021; 30():7760-7775. PubMed ID: 34506281 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]