These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34451068)

  • 21. A novel method to replicate the kinematics of the carpus using a six degree-of-freedom robot.
    Fraysse F; Costi JJ; Stanley RM; Ding B; McGuire D; Eng K; Bain GI; Thewlis D
    J Biomech; 2014 Mar; 47(5):1091-8. PubMed ID: 24461354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional ranges of motion of the wrist joint.
    Ryu JY; Cooney WP; Askew LJ; An KN; Chao EY
    J Hand Surg Am; 1991 May; 16(3):409-19. PubMed ID: 1861019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A proposed method of goniometric measurement of the dart-throwers motion.
    Bugden B
    J Hand Ther; 2013; 26(1):77-9; quiz 80. PubMed ID: 23116644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validity and reliability of inertial sensors for elbow and wrist range of motion assessment.
    Costa V; Ramírez Ó; Otero A; Muñoz-García D; Uribarri S; Raya R
    PeerJ; 2020; 8():e9687. PubMed ID: 32864213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical Effects of Radioscapholunate Fusion With Distal Scaphoidectomy and Triquetrum Excision on Dart-Throwing and Wrist Circumduction Motions.
    Suzuki D; Omokawa S; Iida A; Nakanishi Y; Moritomo H; Mahakkanukrauh P; Tanaka Y
    J Hand Surg Am; 2021 Jan; 46(1):71.e1-71.e7. PubMed ID: 33168276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.
    Davidson M; Bodine C; Weir RFF
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.
    Mjøsund HL; Boyle E; Kjaer P; Mieritz RM; Skallgård T; Kent P
    BMC Musculoskelet Disord; 2017 Mar; 18(1):124. PubMed ID: 28327115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical motion capture accuracy is task-dependent in assessing wrist motion.
    McHugh B; Akhbari B; Morton AM; Moore DC; Crisco JJ
    J Biomech; 2021 May; 120():110362. PubMed ID: 33752132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of normative angular joint kinematics during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Wrist Posture during Occupational Tasks Using Inertial Sensors and Convolutional Neural Networks.
    Young C; Hamilton-Wright A; Oliver ML; Gordon KD
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative Contributions of the Midcarpal and Radiocarpal Joints to Dart-Thrower's Motion at the Wrist.
    Kane PM; Vopat BG; Mansuripur PK; Gaspar MP; Wolfe SW; Crisco JJ; Got C
    J Hand Surg Am; 2018 Mar; 43(3):234-240. PubMed ID: 29146510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo three-dimensional kinematics of the midcarpal joint of the wrist.
    Moritomo H; Murase T; Goto A; Oka K; Sugamoto K; Yoshikawa H
    J Bone Joint Surg Am; 2006 Mar; 88(3):611-21. PubMed ID: 16510829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional kinematics of the rheumatoid wrist after partial arthrodesis.
    Arimitsu S; Murase T; Hashimoto J; Yoshikawa H; Sugamoto K; Moritomo H
    J Bone Joint Surg Am; 2009 Sep; 91(9):2180-7. PubMed ID: 19723995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wrist Plane of Motion and Range During Daily Activities.
    Kaufman-Cohen Y; Friedman J; Levanon Y; Jacobi G; Doron N; Portnoy S
    Am J Occup Ther; 2018; 72(6):7206205080p1-7206205080p10. PubMed ID: 30760400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial Sensor-Based Motion Tracking in Football with Movement Intensity Quantification.
    Wilmes E; de Ruiter CJ; Bastiaansen BJC; Zon JFJAV; Vegter RJK; Brink MS; Goedhart EA; Lemmink KAPM; Savelsbergh GJP
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty.
    Zügner R; Tranberg R; Timperley J; Hodgins D; Mohaddes M; Kärrholm J
    BMC Musculoskelet Disord; 2019 Feb; 20(1):52. PubMed ID: 30727979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrogoniometer measurement and directional analysis of wrist angles and movements during the Sollerman hand function test.
    Dauncey T; Singh HP; Dias JJ
    J Hand Ther; 2017; 30(3):328-336. PubMed ID: 28236564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo radiocarpal kinematics and the dart thrower's motion.
    Crisco JJ; Coburn JC; Moore DC; Akelman E; Weiss AC; Wolfe SW
    J Bone Joint Surg Am; 2005 Dec; 87(12):2729-2740. PubMed ID: 16322624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surgical Treatments for Scapholunate Advanced Collapse Wrist: Kinematics and Functional Performance.
    Wolff AL; Garg R; Kraszewski AP; Hillstrom HJ; Hafer JF; Backus SI; Lenhoff ML; Wolfe SW
    J Hand Surg Am; 2015 Aug; 40(8):1547-53. PubMed ID: 26092664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.
    Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G
    PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.