These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34451073)

  • 1. Generation of Gait Events with a FSR Based Cane Handle.
    Trujillo-León A; de Guzmán-Manzano A; Velázquez R; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable gait measurement system with an instrumented cane for exoskeleton control.
    Hassan M; Kadone H; Suzuki K; Sankai Y
    Sensors (Basel); 2014 Jan; 14(1):1705-22. PubMed ID: 24445417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tactile handle for cane use monitoring.
    Trujillo-León A; Ady R; Vidal-Verdú F; Bachta W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3586-9. PubMed ID: 26737068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Utility of Crutch Force Sensors to Predict User Intent in Assistive Lower Limb Exoskeletons.
    Fong J; Bernacki K; Pham D; Shah R; Tan Y; Oetomo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Lower Limb Muscle Activation and Degree of Weight Support according to Types of Cane-Supported Gait in Hemiparetic Stroke Patients.
    Choi EP; Yang SJ; Jung AH; Na HS; Kim YO; Cho KH
    Biomed Res Int; 2020; 2020():9127610. PubMed ID: 33029530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses.
    Vu HTT; Dong D; Cao HL; Verstraten T; Lefeber D; Vanderborght B; Geeroms J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immediate effects of contralateral and ipsilateral cane use on normal adult gait.
    Aragaki DR; Nasmyth MC; Schultz SC; Nguyen GM; Yentes JM; Kao K; Perell K; Fang MA
    PM R; 2009 Mar; 1(3):208-13. PubMed ID: 19627896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Validation of a Flexible Sensing Array for Placement within the Physical Human-Exoskeleton Interface.
    Turnbull RP; Evans E; Dehghani-Sanij AA
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of control strategies for lower-limb exoskeletons to assist gait.
    Baud R; Manzoori AR; Ijspeert A; Bouri M
    J Neuroeng Rehabil; 2021 Jul; 18(1):119. PubMed ID: 34315499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration problems encountered while monitoring stump/socket interface pressures with force sensing resistors: techniques adopted to minimise inaccuracies.
    Buis AW; Convery P
    Prosthet Orthot Int; 1997 Dec; 21(3):179-82. PubMed ID: 9453089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic Cane Controlled to Adapt Automatically to Its User Gait Characteristics.
    Trujillo-León A; Ady R; Reversat D; Bachta W
    Front Robot AI; 2020; 7():105. PubMed ID: 33501272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weight-Bearing Estimation for Cane Users by Using Onboard Sensors.
    Ballesteros J; Tudela A; Caro-Romero JR; Urdiales C
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons.
    Chen X; Cheng X; Fong J; Oetomo D; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.