These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Hybrid Integration of Magnetoresistive Sensors with MEMS as a Strategy to Detect Ultra-Low Magnetic Fields. Valadeiro J; Cardoso S; Macedo R; Guedes A; Gaspar J; Freitas PP Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404264 [TBL] [Abstract][Full Text] [Related]
83. A Three-Dimensional Finite Element Analysis Model for SH-SAW Torque Sensors. Jiang C; Chen Y; Cho C Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623365 [TBL] [Abstract][Full Text] [Related]
84. Higher-order interference of low-coherence optical fiber sensors. Yang J; Yuan Y; Wu B; Zhou A; Yuan L Opt Lett; 2011 Sep; 36(17):3380-2. PubMed ID: 21886217 [TBL] [Abstract][Full Text] [Related]
85. Acoustic Wave-Induced FeRh Magnetic Phase Transition and Its Application in Antiferromagnetic Pattern Writing and Erasing. Wu H; Liu Q; Gao R; Mi S; Jia L; Wang J; Liu H; Zhang S; Wei J; Wang X; Han G; Wang J ACS Nano; 2024 May; 18(19):12134-12145. PubMed ID: 38687780 [TBL] [Abstract][Full Text] [Related]
86. Novel Shear-horizontal Surface Acoustic Wave Based Immunosensors Using SiO2Waveguiding Layers And Flow Injection Analysis. Guo XS; Chen YQ; Yang XL; Wang LR Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1921-4. PubMed ID: 17282596 [TBL] [Abstract][Full Text] [Related]
87. Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization. Spetzler B; Bald C; Durdaut P; Reermann J; Kirchhof C; Teplyuk A; Meyners D; Quandt E; Höft M; Schmidt G; Faupel F Sci Rep; 2021 Mar; 11(1):5269. PubMed ID: 33674690 [TBL] [Abstract][Full Text] [Related]
88. Wireless, magnetic-based sensors for biomedical applications. Ong KG; Tan EL; Pereles B; Horton B Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5436-9. PubMed ID: 19963643 [TBL] [Abstract][Full Text] [Related]
89. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
90. Flux concentration and modulation based magnetoresistive sensor with integrated planar compensation coils. Tian W; Hu J; Pan M; Chen D; Zhao J Rev Sci Instrum; 2013 Mar; 84(3):035004. PubMed ID: 23556843 [TBL] [Abstract][Full Text] [Related]
91. Development of Pd/TiO Constantinoiu I; Viespe C Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32326639 [TBL] [Abstract][Full Text] [Related]
92. Fast Surface Acoustic Wave-Based Sensors to Investigate the Kinetics of Gas Uptake in Ultra-Microporous Frameworks. Paschke B; Wixforth A; Denysenko D; Volkmer D ACS Sens; 2017 Jun; 2(6):740-747. PubMed ID: 28723109 [TBL] [Abstract][Full Text] [Related]
93. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection. Xu FQ; Wang W; Xue XF; Hu HL; Liu XL; Pan Y Sensors (Basel); 2015 Dec; 15(12):30187-98. PubMed ID: 26633419 [TBL] [Abstract][Full Text] [Related]
94. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor. Fleyer M; Horowitz M Opt Express; 2018 Apr; 26(7):9107-9133. PubMed ID: 29715868 [TBL] [Abstract][Full Text] [Related]
95. Contact Pressure Level Indication Using Stepped Output Tactile Sensors. Choi E; Sul O; Kim J; Kim K; Kim JS; Kwon DY; Choi BD; Lee SB Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070626 [TBL] [Abstract][Full Text] [Related]