BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34451157)

  • 1. Single-Use Disposable Waste Upcycling via Thermochemical Conversion Pathway.
    Joo J; Lee S; Choi H; Lin KA; Lee J
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11.
    Lee N; Joo J; Lin KA; Lee J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char.
    Wang N; Qian K; Chen D; Zhao H; Yin L
    Waste Manag; 2020 Feb; 102():380-390. PubMed ID: 31733562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis for Nylon 6 Monomer Recovery from Teabag Waste.
    Kim S; Lee N; Lee J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis.
    Kim S; Lee CG; Kim YT; Kim KH; Lee J
    Chemosphere; 2020 Jun; 248():126043. PubMed ID: 32007768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis.
    Aslan DI; Özoğul B; Ceylan S; Geyikçi F
    Bioresour Technol; 2018 Jun; 258():105-110. PubMed ID: 29524684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of polycyclic compounds and biphenyls generated by pyrolysis of industrial plastic waste by using supported metal catalysts: A case study of polyethylene terephthalate treatment.
    Kim S; Park C; Lee J
    J Hazard Mater; 2020 Jun; 392():122464. PubMed ID: 32193114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste.
    Mohseni-Bandpei A; Majlesi M; Rafiee M; Nojavan S; Nowrouz P; Zolfagharpour H
    Chemosphere; 2019 Jul; 227():277-288. PubMed ID: 30999169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis of Denim Jeans Waste: Pyrolytic Product Modification by the Addition of Sodium Carbonate.
    Joo J; Choi H; Lin KA; Lee J
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications.
    Wang Y; Chang BP; Veksha A; Kashcheev A; Tok ALY; Lipik V; Yoshiie R; Ueki Y; Naruse I; Lisak G
    J Hazard Mater; 2024 Feb; 464():132996. PubMed ID: 37988865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis.
    Gupta GK; Gupta PK; Mondal MK
    Waste Manag; 2019 Mar; 87():499-511. PubMed ID: 31109550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products.
    Foong SY; Liew RK; Lee CL; Tan WP; Peng W; Sonne C; Tsang YF; Lam SS
    J Hazard Mater; 2022 Jan; 421():126774. PubMed ID: 34364214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach.
    Chhabra V; Bhattacharya S; Shastri Y
    Waste Manag; 2019 May; 90():152-167. PubMed ID: 30935785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.