BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 34451161)

  • 61. Polymeric Systems for the Controlled Release of Flavonoids.
    Pecorini G; Ferraro E; Puppi D
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839955
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis.
    Noreen S; Ma JX; Saeed M; Pervaiz F; Hanif MF; Ahmed B; Farooq MI; Akram F; Safdar M; Madni A; Naveed M; Chang-Xing L
    Drug Deliv Transl Res; 2022 Nov; 12(11):2649-2666. PubMed ID: 35499715
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradable polymers for targeted delivery of anti-cancer drugs.
    Doppalapudi S; Jain A; Domb AJ; Khan W
    Expert Opin Drug Deliv; 2016 Jun; 13(6):891-909. PubMed ID: 26983898
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers.
    Kirillova A; Yeazel TR; Asheghali D; Petersen SR; Dort S; Gall K; Becker ML
    Chem Rev; 2021 Sep; 121(18):11238-11304. PubMed ID: 33856196
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
    Ogueri KS; Escobar Ivirico JL; Nair LS; Allcock HR; Laurencin CT
    Regen Eng Transl Med; 2017 Mar; 3(1):15-31. PubMed ID: 28596987
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.
    Neves MI; Wechsler ME; Gomes ME; Reis RL; Granja PL; Peppas NA
    Tissue Eng Part B Rev; 2017 Feb; 23(1):27-43. PubMed ID: 27484808
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential.
    Li Y; Li N; Ge J; Xue Y; Niu W; Chen M; Du Y; Ma PX; Lei B
    Biomaterials; 2019 May; 201():68-76. PubMed ID: 30798021
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine.
    Wu DT; Munguia-Lopez JG; Cho YW; Ma X; Song V; Zhu Z; Tran SD
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834134
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair.
    Rathna RP; Kulandhaivel M
    Arch Microbiol; 2024 Apr; 206(4):199. PubMed ID: 38563993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers.
    Malek-Khatabi A; Tabandeh Z; Nouri A; Mozayan E; Sartorius R; Rahimi S; Jamaledin R
    ACS Appl Bio Mater; 2022 Nov; 5(11):5015-5040. PubMed ID: 36214209
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications.
    Muthukumar T; Song JE; Khang G
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835526
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradable polymers for electrospinning: towards biomedical applications.
    Kai D; Liow SS; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():659-70. PubMed ID: 25491875
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multifunctional temperature-responsive polymers as advanced biomaterials and beyond.
    Frazar EM; Shah RA; Dziubla TD; Hilt JZ
    J Appl Polym Sci; 2020 Jul; 137(25):. PubMed ID: 34305165
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis.
    Martins C; Chauhan VM; Araújo M; Abouselo A; Barrias CC; Aylott JW; Sarmento B
    Nanomedicine (Lond); 2020 Aug; 15(23):2287-2309. PubMed ID: 32945230
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates.
    Kuperkar K; Atanase LI; Bahadur A; Crivei IC; Bahadur P
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.
    Lee SH; Shin H
    Adv Drug Deliv Rev; 2007 May; 59(4-5):339-59. PubMed ID: 17499384
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials.
    Savina IN; Zoughaib M; Yergeshov AA
    Gels; 2021 Jun; 7(3):. PubMed ID: 34203439
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines.
    Nath PC; Sharma R; Debnath S; Nayak PK; Roy R; Sharma M; Inbaraj BS; Sridhar K
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129129. PubMed ID: 38181913
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly porous drug-eluting structures: from wound dressings to stents and scaffolds for tissue regeneration.
    Elsner JJ; Kraitzer A; Grinberg O; Zilberman M
    Biomatter; 2012; 2(4):239-70. PubMed ID: 23507890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.