These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34451164)

  • 1. Polycarbonate/Poly(vinylidene fluoride)-Blend-Based Nanocomposites-Effect of Adding Different Carbon Nanofillers/Organoclay.
    Chiu FC; Behera K; Cai HJ; Chang YH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamide 6/Poly(vinylidene fluoride) Blend-Based Nanocomposites with Enhanced Rigidity: Selective Localization of Carbon Nanotube and Organoclay.
    Lin HM; Behera K; Yadav M; Chiu FC
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications of Phase Morphology, Physical Properties, and Burning Anti-Dripping Performance of Compatibilized Poly(butylene succinate)/High-Density Polyethylene Blend by Adding Nanofillers.
    Behera K; Tsai CH; Chang YH; Chiu FC
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Nanoplatelet-Reinforced Poly(vinylidene fluoride)/High Density Polyethylene Blend-Based Nanocomposites with Enhanced Thermal and Electrical Properties.
    Behera K; Yadav M; Chiu FC; Rhee KY
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Piezoresistive Behavior of Poly(Vinylidene Fluoride)/Carbon Nanotube Composites Using Poly(Methyl Methacrylate).
    Tang X; Pötschke P; Pionteck J; Li Y; Formanek P; Voit B
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43125-43137. PubMed ID: 32897046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity.
    Ke K; Pötschke P; Wiegand N; Krause B; Voit B
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14190-9. PubMed ID: 27171017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVDF Hybrid Nanocomposites with Graphene and Carbon Nanotubes and Their Thermoresistive and Joule Heating Properties.
    Stoyanova S; Ivanov E; Hegde LR; Georgopoulou A; Clemens F; Bedoui F; Kotsilkova R
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Structure and Performance of Bulk and Porous Vapor Sensors Based on Co-continuous Carbon Nanotube-Filled Blends of Poly(vinylidene fluoride) and Polycarbonates by Varying Melt Viscosity.
    Li Y; Zheng Y; Pionteck J; Pötschke P; Voit B
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45404-45419. PubMed ID: 32985881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Tunable Piezoresistive Behavior of Carbon Nanotube-Containing Conductive Polymer Blend Composites Prepared from Two Polymers Exhibiting Crystallization-Induced Phase Separation.
    Tang X; Pionteck J; Krause B; Pötschke P; Voit B
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43333-43347. PubMed ID: 34459584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unzipped multiwalled carbon nanotubes-incorporated poly(vinylidene fluoride) nanocomposites with enhanced interface and piezoelectric β phase.
    He L; Xia G; Sun J; Zhao Q; Song R; Ma Z
    J Colloid Interface Sci; 2013 Mar; 393():97-103. PubMed ID: 23245886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity.
    Zhao X; Wang H; Fu Z; Li Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8411-8416. PubMed ID: 29488745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Nano-CeO
    Pandey M; Deshmukh K; Dhandapani K; Singh RS
    Langmuir; 2024 Jan; 40(3):1909-1921. PubMed ID: 38197127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing a Microcapacitor Network of Carbon Nanotubes in Polymer Blends via Crystallization-Induced Phase Separation Toward High Dielectric Constant and Low Loss.
    Mao HJ; Liu DF; Zhang N; Huang T; Kühnert I; Yang JH; Wang Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26444-26454. PubMed ID: 32425040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Different Carbon-Based Fillers on Electrical and Mechanical Properties of a PC/ABS Blend.
    Dal Lago E; Cagnin E; Boaretti C; Roso M; Lorenzetti A; Modesti M
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31877984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness.
    Qi Q; Ma L; Zhao B; Wang S; Liu X; Lei Y; Park CB
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36568-36577. PubMed ID: 32686398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films.
    Zhao B; Zhao C; Li R; Hamidinejad SM; Park CB
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20873-20884. PubMed ID: 28558470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Filler Synergy and Cast Film Extrusion Parameters on Extrudability and Direction-Dependent Conductivity of PVDF/Carbon Nanotube/Carbon Black Composites.
    Krause B; Kunz K; Kretzschmar B; Kühnert I; Pötschke P
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33333875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites.
    Jen YM; Chang HH; Lu CM; Liang SY
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes.
    Dul S; Pegoretti A; Fambri L
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30158474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.