These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34451168)

  • 1. Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation.
    Stepanova M; Solomakha O; Rabchinskii M; Averianov I; Gofman I; Nashchekina Y; Antonov G; Smirnov A; Ber B; Nashchekin A; Korzhikova-Vlakh E
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties.
    Solomakha O; Stepanova M; Gofman I; Nashchekina Y; Rabchinskii M; Nashchekin A; Lavrentieva A; Korzhikova-Vlakh E
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Modification of Nanocrystalline Cellulose for Manufacturing of Osteoconductive Composite Materials.
    Solomakha O; Stepanova M; Dobrodumov A; Gofman I; Nashchekina Y; Nashchekin A; Korzhikova-Vlakh E
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PGlu-Modified Nanocrystalline Cellulose Improves Mechanical Properties, Biocompatibility, and Mineralization of Polyester-Based Composites.
    Stepanova M; Averianov I; Serdobintsev M; Gofman I; Blum N; Semenova N; Nashchekina Y; Vinogradova T; Korzhikov-Vlakh V; Karttunen M; Korzhikova-Vlakh E
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of rGO-graft-poly(trimethylene carbonate) for nerve regeneration conduits.
    Guo Z; Kofink S; Chen H; Liang J; Grijpma DW; Poot AA
    Biomed Mater; 2019 Mar; 14(3):034101. PubMed ID: 30690436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications.
    Larrañaga A; Guay-Bégin AA; Chevallier P; Sabbatier G; Fernández J; Laroche G; Sarasua JR
    Biomatter; 2014; 4():e27979. PubMed ID: 24509417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Nanobioglass Reinforced Poly(ε-Caprolactone) Composites Synthesized via In Situ Ring Opening Polymerization.
    Terzopoulou Z; Baciu D; Gounari E; Steriotis T; Charalambopoulou G; Bikiaris D
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites.
    Osicka J; Ilčíková M; Mrlik M; Minařík A; Pavlinek V; Mosnáček J
    Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification.
    Hejna A; Barczewski M; Kosmela P; Mysiukiewicz O; Piasecki A; Tercjak A
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of poly(epsilon-caprolactone)-b-poly(gamma-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst.
    Rong G; Deng M; Deng C; Tang Z; Piao L; Chen X; Jing X
    Biomacromolecules; 2003; 4(6):1800-4. PubMed ID: 14606911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of water dispersible and biocompatible nanodiamond-poly(amino acid) composites through the ring-opening polymerization.
    Xu D; Liu M; Zhang Q; Huang Q; Huang H; Tian J; Jiang R; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():496-501. PubMed ID: 30033281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin.
    Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M
    Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites.
    Zygo M; Mrlik M; Ilcikova M; Hrabalikova M; Osicka J; Cvek M; Sedlacik M; Hanulikova B; Munster L; Skoda D; Urbánek P; Pietrasik J; Mosnáček J
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lightweight Poly(ε-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties.
    Vignali A; Iannace S; Falcone G; Utzeri R; Stagnaro P; Bertini F
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.
    Varaprasad K; Pariguana M; Raghavendra GM; Jayaramudu T; Sadiku ER
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):85-93. PubMed ID: 27770963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of novel cholic acid functionalized branched oligo/poly(epsilon-caprolactone)s for biomedical applications.
    Fu HL; Yu L; Zhang H; Zhang XZ; Cheng SX; Zhuo RX
    J Biomed Mater Res A; 2007 Apr; 81(1):186-94. PubMed ID: 17120203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity control of poly(vinyl alcohol)-graphene oxide nanocomposites.
    Panova TV; Efimova AA; Berkovich AK; Efimov AV
    RSC Adv; 2020 Jun; 10(40):24027-24036. PubMed ID: 35517320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties.
    Baek SW; Song DH; Lee HI; Kim DS; Heo Y; Kim JH; Park CG; Han DK
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.