These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34451223)

  • 1. Analysis on Microstructure-Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations.
    Kojima T; Washio T; Hara S; Koishi M; Amino N
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber.
    Kojima T; Washio T; Hara S; Koishi M
    Sci Rep; 2020 Oct; 10(1):18127. PubMed ID: 33093549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation.
    Gao Y; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2014 Oct; 16(39):21372-82. PubMed ID: 25179543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites.
    Staniewicz L; Vaudey T; Degrandcourt C; Couty M; Gaboriaud F; Midgley P
    Sci Rep; 2014 Dec; 4():7389. PubMed ID: 25487130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks.
    Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F
    Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Silane Coupling Agents on Filler Network Structure and Stress-Induced Particle Rearrangement in Elastomer Nanocomposites.
    Presto D; Meyerhofer J; Kippenbrock G; Narayanan S; Ilavsky J; Moctezuma S; Sutton M; Foster MD
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47891-47901. PubMed ID: 32933248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber-filler interaction, the degree of reinforcement and morphology.
    Abraham J; Maria HJ; George SC; Kalarikkal N; Thomas S
    Phys Chem Chem Phys; 2015 May; 17(17):11217-28. PubMed ID: 25829168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network.
    Jung JH; Lee SJ; Kim HS
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale microstructure model of carbon black distribution in rubber.
    Jean A; Jeulin D; Forest S; Cantournet S; N'guyen F
    J Microsc; 2011 Mar; 241(3):243-60. PubMed ID: 21118222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural dynamics and interfacial properties of filler-reinforced elastomers.
    Fritzsche J; Klüppel M
    J Phys Condens Matter; 2011 Jan; 23(3):035104. PubMed ID: 21406859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Nano- and Microcalcium Carbonate in Uncrosslinked Natural Rubber Composites: New Results of Structure-Properties Relationship.
    Phuhiangpa N; Ponloa W; Phongphanphanee S; Smitthipong W
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement.
    Liu J; Wu S; Zhang L; Wang W; Cao D
    Phys Chem Chem Phys; 2011 Jan; 13(2):518-29. PubMed ID: 21052606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Cyclic Stress-Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning.
    Miyazawa Y; Briffod F; Shiraiwa T; Enoki M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber.
    Zedler Ł; Colom X; Cañavate J; Saeb MR; T Haponiuk J; Formela K
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanics of Stress-Softening and Hysteresis of Filler Reinforced Elastomers with Applications to Thermo-Oxidative Aging.
    Plagge J; Klüppel M
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32549387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of filler macro-dispersion in rubber matrix by radiometric stereo microscopy.
    Ohser J; Lacayo-Pineda J; Putman M; Rack A; Dobrovolskij D
    J Microsc; 2019 Apr; 274(1):32-44. PubMed ID: 30701553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro contact wear of dental composites.
    Nagarajan VS; Jahanmir S; Thompson VP
    Dent Mater; 2004 Jan; 20(1):63-71. PubMed ID: 14698775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of filler loading and morphology on the mechanical properties of contemporary composites.
    Kim KH; Ong JL; Okuno O
    J Prosthet Dent; 2002 Jun; 87(6):642-9. PubMed ID: 12131887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of the impact of the surface topology of carbon black on the mechanical properties of elastomer nanocomposites.
    Zhang Z; Fang Y; Chen Q; Duan P; Wu X; Zhang L; Wu W; Liu J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5602-5612. PubMed ID: 36727525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.