BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34451257)

  • 21. Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro.
    Kim HY; Kim BH; Kim MS
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide.
    Xu Z; Li Y; Xu D; Li L; Xu Y; Chen L; Liu Y; Sun J
    RSC Adv; 2022 Sep; 12(39):25405-25414. PubMed ID: 36199313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite.
    He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y
    J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation.
    Mi L; Li F; Xu D; Liu J; Li J; Zhong L; Liu Y; Bai N
    Front Bioeng Biotechnol; 2024; 12():1343294. PubMed ID: 38333080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.
    Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous crosslinked poly(ε-caprolactone fumarate)/nanohydroxyapatite composites for bone tissue engineering.
    Farokhi M; Sharifi S; Shafieyan Y; Bagher Z; Mottaghitalab F; Hatampoor A; Imani M; Shokrgozar MA
    J Biomed Mater Res A; 2012 Apr; 100(4):1051-60. PubMed ID: 22323426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Solvent-Free PCL/β-TCP Composite Fiber for 3D Printing: Physiochemical and Biological Investigation.
    Ngo ST; Lee WF; Wu YF; Salamanca E; Aung LM; Chao YQ; Tsao TC; Hseuh HW; Lee YH; Wang CC; Chang WJ
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells.
    Yang Y; Qiu B; Zhou Z; Hu C; Li J; Zhou C
    Ann Transplant; 2023 Oct; 28():e940365. PubMed ID: 37904328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering.
    Wang B; Ye X; Chen G; Zhang Y; Zeng Z; Liu C; Tan Z; Jie X
    Front Bioeng Biotechnol; 2024; 12():1273541. PubMed ID: 38440328
    [No Abstract]   [Full Text] [Related]  

  • 34. Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications.
    Bozorgi A; Mozafari M; Khazaei M; Soleimani M; Jamalpoor Z
    Bioimpacts; 2022; 12(3):233-246. PubMed ID: 35677664
    [No Abstract]   [Full Text] [Related]  

  • 35. Characterization and In Vitro Evaluation of Porous Polymer-Blended Scaffolds Functionalized with Tricalcium Phosphate.
    Pudełko-Prażuch I; Balasubramanian M; Ganesan SM; Marecik S; Walczak K; Pielichowska K; Chatterjee S; Kandaswamy R; Pamuła E
    J Funct Biomater; 2024 Feb; 15(3):. PubMed ID: 38535250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.
    Wu X; Miao L; Yao Y; Wu W; Liu Y; Chen X; Sun W
    Int J Nanomedicine; 2014; 9():4135-43. PubMed ID: 25206304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.