These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34451345)
41. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Xu C; Paone E; Rodríguez-Padrón D; Luque R; Mauriello F Chem Soc Rev; 2020 Jul; 49(13):4273-4306. PubMed ID: 32453311 [TBL] [Abstract][Full Text] [Related]
42. Magnetic Heating of Nanoparticles Applied in the Synthesis of a Magnetically Recyclable Hydrogenation Nanocatalyst. Gyergyek S; Lisjak D; Beković M; Grilc M; Likozar B; Nečemer M; Makovec D Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32532039 [TBL] [Abstract][Full Text] [Related]
43. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol. Su Y; Chen C; Zhu X; Zhang Y; Gong W; Zhang H; Zhao H; Wang G Dalton Trans; 2017 May; 46(19):6358-6365. PubMed ID: 28463366 [TBL] [Abstract][Full Text] [Related]
44. A Strategy for the Simultaneous Synthesis of Methallyl Alcohol and Diethyl Acetal with Sn-β. Hu W; Wan Y; Zhu L; Cheng X; Wan S; Lin J; Wang Y ChemSusChem; 2017 Dec; 10(23):4715-4724. PubMed ID: 28926196 [TBL] [Abstract][Full Text] [Related]
45. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts. Moreno-Marrodan C; Barbaro P; Caporali S; Bossola F ChemSusChem; 2018 Oct; 11(20):3649-3660. PubMed ID: 30106509 [TBL] [Abstract][Full Text] [Related]
46. Probing the mechanism of the conversion of methyl levulinate into γ-valerolactone catalyzed by Al(OiPr) Ju Z; Feng S; Ren L; Lei T; Cheng H; Yu M; Ge C RSC Adv; 2022 Jan; 12(5):2788-2797. PubMed ID: 35425337 [TBL] [Abstract][Full Text] [Related]
47. Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. López-Asensio R; Jiménez Gómez CP; García Sancho C; Moreno-Tost R; Cecilia JA; Maireles-Torres P Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769888 [TBL] [Abstract][Full Text] [Related]
48. Porous Zirconium-Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. Li H; Liu X; Yang T; Zhao W; Saravanamurugan S; Yang S ChemSusChem; 2017 Apr; 10(8):1761-1770. PubMed ID: 28164471 [TBL] [Abstract][Full Text] [Related]
49. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges. Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143 [TBL] [Abstract][Full Text] [Related]
50. Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone. Yang T; Li H; He J; Liu Y; Zhao W; Wang Z; Ji X; Yang S ACS Omega; 2017 Mar; 2(3):1047-1054. PubMed ID: 31457487 [TBL] [Abstract][Full Text] [Related]
52. Ru nanoparticles dispersed on magnetic yolk-shell nanoarchitectures with Fe Yang Y; Zhang W; Yang F; Zhou B; Zeng D; Zhang N; Zhao G; Hao S; Zhang X Nanoscale; 2018 Feb; 10(5):2199-2206. PubMed ID: 29334102 [TBL] [Abstract][Full Text] [Related]
53. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid. Chen J; Wang S; Huang J; Chen L; Ma L; Huang X ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979 [TBL] [Abstract][Full Text] [Related]
54. Catalytic conversion of carbohydrates into 5-ethoxymethylfurfural using γ-AlOOH and CeO Zhang L; Xing X; Sun R; Hu M RSC Adv; 2022 Aug; 12(36):23118-23128. PubMed ID: 36090408 [TBL] [Abstract][Full Text] [Related]
55. Efficient acid-base bifunctional catalysts for the fixation of CO(2) with epoxides under metal- and solvent-free conditions. Sun J; Han L; Cheng W; Wang J; Zhang X; Zhang S ChemSusChem; 2011 Apr; 4(4):502-7. PubMed ID: 21275061 [TBL] [Abstract][Full Text] [Related]
56. Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors. Zhang J; Dong K; Luo W; Guan H ACS Omega; 2018 Jun; 3(6):6206-6216. PubMed ID: 31458803 [TBL] [Abstract][Full Text] [Related]
57. Simultaneous Conversion of C Lyu X; Zhang Z; Okejiri F; Chen H; Xu M; Chen X; Deng S; Lu X ChemSusChem; 2019 Oct; 12(19):4400-4404. PubMed ID: 31419072 [TBL] [Abstract][Full Text] [Related]
58. Batch and Continuous-Flow Preparation of Biomass-Derived Furfural Acetals over a TiO Zhou B; Song F; Ma X; Wang L ChemSusChem; 2021 Jun; 14(11):2341-2351. PubMed ID: 33831278 [TBL] [Abstract][Full Text] [Related]
59. H Deng Q; Zhou R; Zhang YC; Li X; Li J; Tu S; Sheng G; Wang J; Zeng Z; Yoskamtorn T; Edman Tsang SC Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202211461. PubMed ID: 36156351 [TBL] [Abstract][Full Text] [Related]
60. Hydrogen Generation from Catalytic Reforming of Paraformaldehyde and Water by Polymeric Bifunctional Catalysts Comprising Ruthenium and Sulfonic Acid Units. Shen Y; Bai C; Zhan Y; Ning F; Wang H; Lv G; Zhou X Chempluschem; 2020 Aug; 85(8):1646-1654. PubMed ID: 32749755 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]