These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34451727)
21. Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Zhang S; Sandal N; Polowick PL; Stiller J; Stougaard J; Fobert PR Plant J; 2003 Feb; 33(4):607-19. PubMed ID: 12609036 [TBL] [Abstract][Full Text] [Related]
22. Floral Morphology and Relationships of Clusia gundlachii with a Discussion of Floral Organ Identity and Diversity in the Genus Clusia. Gustafsson MH Int J Plant Sci; 2000 Jan; 161(1):43-53. PubMed ID: 10648193 [TBL] [Abstract][Full Text] [Related]
23. Analysis of the floral MADS-box genes from monocotyledonous Trilliaceae species indicates the involvement of SEPALLATA3-like genes in sepal-petal differentiation. Kubota S; Kanno A Plant Sci; 2015 Dec; 241():266-76. PubMed ID: 26706077 [TBL] [Abstract][Full Text] [Related]
24. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823 [TBL] [Abstract][Full Text] [Related]
25. Structure and ontogeny of the pericarp of six Eupatorieae (Asteraceae) with ecological and taxonomic considerations. Marzinek J; Oliveira DM An Acad Bras Cienc; 2010 Jun; 82(2):279-91. PubMed ID: 20563409 [TBL] [Abstract][Full Text] [Related]
26. 'Living stones' reveal alternative petal identity programs within the core eudicots. Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031 [TBL] [Abstract][Full Text] [Related]
27. Ectopic expression of the Yao JL; Xu J; Tomes S; Cui W; Luo Z; Deng C; Ireland HS; Schaffer RJ; Gleave AP Plant Direct; 2018 Apr; 2(4):e00051. PubMed ID: 31245717 [TBL] [Abstract][Full Text] [Related]
28. Androecial evolution in Caryophyllales in light of a paraphyletic Molluginaceae. Brockington S; Dos Santos P; Glover B; De Craene LR Am J Bot; 2013 Sep; 100(9):1757-78. PubMed ID: 24008516 [TBL] [Abstract][Full Text] [Related]
29. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation. Gong P; Ao X; Liu G; Cheng F; He C Plant Cell Physiol; 2017 Mar; 58(3):411-425. PubMed ID: 28013274 [TBL] [Abstract][Full Text] [Related]
30. Floral ontogeny in legume genera Petalostylis, Labichea, and Dialium (Caesalpinioideae: Cassieae), a series in floral reduction. Tucker S Am J Bot; 1998 Feb; 85(2):184. PubMed ID: 21684904 [TBL] [Abstract][Full Text] [Related]
31. Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Jack T; Sieburth L; Meyerowitz E Plant J; 1997 Apr; 11(4):825-39. PubMed ID: 9161038 [TBL] [Abstract][Full Text] [Related]
32. A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). Elomaa P; Mehto M; Kotilainen M; Helariutta Y; Nevalainen L; Teeri TH Plant J; 1998 Oct; 16(1):93-9. PubMed ID: 9807831 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary loss of sepals and/or petals in detarioid legume taxa Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae: Caesalpinioideae). Tucker SC Am J Bot; 2000 May; 87(5):608-24. PubMed ID: 10811785 [TBL] [Abstract][Full Text] [Related]
34. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Drews GN; Bowman JL; Meyerowitz EM Cell; 1991 Jun; 65(6):991-1002. PubMed ID: 1675158 [TBL] [Abstract][Full Text] [Related]
35. Polarity in the early floral meristem of Arabidopsis. Thoma R; Chandler JW Plant Signal Behav; 2015; 10(4):e992733. PubMed ID: 25806573 [TBL] [Abstract][Full Text] [Related]
36. Relationship between the species-representative phenotype and intraspecific variation in Ranunculaceae floral organ and Asteraceae flower numbers. Kitazawa MS; Fujimoto K Ann Bot; 2016 Apr; 117(5):925-35. PubMed ID: 27052344 [TBL] [Abstract][Full Text] [Related]
37. Pappus and fruit micromorphology and fruit anatomy in some members of the tribe Cardueae (Asteraceae) from Turkey with their contributions to systematics. Ozcan M; Demir K Microsc Res Tech; 2022 Feb; 85(2):641-666. PubMed ID: 34585806 [TBL] [Abstract][Full Text] [Related]
38. Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers. Iwamoto A; Nakamura A; Kurihara S; Otani A; Ronse De Craene LP J Plant Res; 2018 May; 131(3):395-407. PubMed ID: 29549525 [TBL] [Abstract][Full Text] [Related]
39. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Zhao D; Yang M; Solava J; Ma H Dev Genet; 1999 Sep; 25(3):209-23. PubMed ID: 10528262 [TBL] [Abstract][Full Text] [Related]
40. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Li C; Chen L; Fan X; Qi W; Ma J; Tian T; Zhou T; Ma L; Chen F Tree Physiol; 2020 Aug; 40(9):1247-1259. PubMed ID: 32348527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]