BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34453447)

  • 1. Evaluation of skin sensitization induced by four ionic liquids.
    Frawley RP; Germolec DR; Johnson VJ; Gulledge T; Manheng W; White K; Shockley KR; Harris SF; Hooth M; Ryan K
    J Appl Toxicol; 2022 Mar; 42(3):392-408. PubMed ID: 34453447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity studies of select ionic liquids (1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-butyl-1-methylpyrrolidinium chloride, and n-butylpyridinium chloride) administered in drinking water to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice.
    National Toxicology Program
    Toxic Rep Ser; 2022 May; (103):. PubMed ID: 35652689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-animal assessment of skin sensitization hazard: Is an integrated testing strategy needed, and if so what should be integrated?
    Roberts DW; Patlewicz G
    J Appl Toxicol; 2018 Jan; 38(1):41-50. PubMed ID: 28543848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the inhibitory effects of N-butylpyridinium chloride and structurally related ionic liquids on organic cation transporters 1/2 and human toxic extrusion transporters 1/2-k in vitro and in vivo.
    Cheng Y; Martinez-Guerrero LJ; Wright SH; Kuester RK; Hooth MJ; Sipes IG
    Drug Metab Dispos; 2011 Sep; 39(9):1755-61. PubMed ID: 21646436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary test battery with KeratinoSens™ and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction.
    Otsubo Y; Nishijo T; Miyazawa M; Saito K; Mizumachi H; Sakaguchi H
    Regul Toxicol Pharmacol; 2017 Aug; 88():118-124. PubMed ID: 28602621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariate models for prediction of human skin sensitization hazard.
    Strickland J; Zang Q; Paris M; Lehmann DM; Allen D; Choksi N; Matheson J; Jacobs A; Casey W; Kleinstreuer N
    J Appl Toxicol; 2017 Mar; 37(3):347-360. PubMed ID: 27480324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silico structure alert parameter.
    Hirota M; Ashikaga T; Kouzuki H
    J Appl Toxicol; 2018 Apr; 38(4):514-526. PubMed ID: 29226339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization.
    Hirota M; Fukui S; Okamoto K; Kurotani S; Imai N; Fujishiro M; Kyotani D; Kato Y; Kasahara T; Fujita M; Toyoda A; Sekiya D; Watanabe S; Seto H; Takenouchi O; Ashikaga T; Miyazawa M
    J Appl Toxicol; 2015 Nov; 35(11):1333-47. PubMed ID: 25824844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of skin sensitization potency using machine learning approaches.
    Zang Q; Paris M; Lehmann DM; Bell S; Kleinstreuer N; Allen D; Matheson J; Jacobs A; Casey W; Strickland J
    J Appl Toxicol; 2017 Jul; 37(7):792-805. PubMed ID: 28074598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of in vitro assays for the assessment of the skin sensitization hazard of functional polysiloxanes and silanes.
    Petry T; Bosch A; Coste X; Eigler D; Germain P; Seidel S; Jean PA
    Regul Toxicol Pharmacol; 2017 Mar; 84():64-76. PubMed ID: 28017767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Spectro-DPRA, KeratinoSens™ and h-CLAT to estimation of the skin sensitization potential of cosmetics ingredients.
    Cho SA; Choi M; Park SR; An S; Park JH
    J Appl Toxicol; 2020 Feb; 40(2):300-312. PubMed ID: 31680285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metallacage encapsulating chloride as a probe for a solvation scale in ionic liquids.
    Daguenet C; Dyson PJ
    Inorg Chem; 2007 Jan; 46(2):403-8. PubMed ID: 17279818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-correlations as a tool to model for skin sensitization.
    Toropova AP; Toropov AA; Benfenati E
    Food Chem Toxicol; 2021 Nov; 157():112580. PubMed ID: 34560179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization?
    Patlewicz G; Casati S; Basketter DA; Asturiol D; Roberts DW; Lepoittevin JP; Worth AP; Aschberger K
    Regul Toxicol Pharmacol; 2016 Dec; 82():147-155. PubMed ID: 27569201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of dermal sensitization potential for industrial or agricultural chemicals with EpiSensA.
    Mizumachi H; LeBaron MJ; Settivari RS; Miyazawa M; Marty MS; Sakaguchi H
    J Appl Toxicol; 2021 Jun; 41(6):915-927. PubMed ID: 33124094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Electronic and Physicochemical Properties between Imidazolium-Based and Pyridinium-Based Ionic Liquids.
    Wu C; De Visscher A; Gates ID
    J Phys Chem B; 2018 Jul; 122(26):6771-6780. PubMed ID: 29889524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructed human epidermis-based testing strategy of skin sensitization potential and potency classification using epidermal sensitization assay and in silico data.
    Mizumachi H; Suzuki S; Sakuma M; Natsui M; Imai N; Miyazawa M
    J Appl Toxicol; 2024 Mar; 44(3):415-427. PubMed ID: 37846211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of 4-methylcyclohexanemethanol (MCHM) in a combined irritancy and Local Lymph Node Assay (LLNA) in mice.
    Johnson VJ; Auerbach SS; Luster MI; Waidyanatha S; Masten SA; Wolfe MS; Burleson FG; Burleson GR; Germolec DR
    Food Chem Toxicol; 2017 Jul; 105():99-105. PubMed ID: 28343035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating solute nucleophilicity with room temperature ionic liquids.
    Crowhurst L; Lancaster NL; Pérez-Arlandis JM; Welton T
    J Am Chem Soc; 2004 Sep; 126(37):11549-55. PubMed ID: 15366901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The correlation of haptenation of gold nanoparticles and cysteine modified screen printed carbon electrode by impedance technique with local lymph node assay data.
    Noh TU; Aziz AA
    Toxicol In Vitro; 2022 Oct; 84():105433. PubMed ID: 35817266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.