These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34454244)

  • 1. Non-differentiable saddle points and sub-optimal local minima exist for deep ReLU networks.
    Liu B; Liu Z; Zhang T; Yuan T
    Neural Netw; 2021 Dec; 144():75-89. PubMed ID: 34454244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Depth and Width on Local Minima in Deep Learning.
    Kawaguchi K; Huang J; Kaelbling LP
    Neural Comput; 2019 Jul; 31(7):1462-1498. PubMed ID: 31120383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth with nonlinearity creates no bad local minima in ResNets.
    Kawaguchi K; Bengio Y
    Neural Netw; 2019 Oct; 118():167-174. PubMed ID: 31295691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DANTE: Deep alternations for training neural networks.
    Sinha VB; Kudugunta S; Sankar AR; Chavali ST; Balasubramanian VN
    Neural Netw; 2020 Nov; 131():127-143. PubMed ID: 32771843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random Sketching for Neural Networks With ReLU.
    Wang D; Zeng J; Lin SB
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):748-762. PubMed ID: 32275612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks with ReLU powers need less depth.
    Cabanilla KIM; Mohammad RZ; Lope JEC
    Neural Netw; 2024 Apr; 172():106073. PubMed ID: 38159509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Every Local Minimum Value Is the Global Minimum Value of Induced Model in Nonconvex Machine Learning.
    Kawaguchi K; Huang J; Kaelbling LP
    Neural Comput; 2019 Dec; 31(12):2293-2323. PubMed ID: 31614105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping the learning landscape in neural networks around wide flat minima.
    Baldassi C; Pittorino F; Zecchina R
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):161-170. PubMed ID: 31871189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Whale Optimization Algorithm Approach for Deep Neural Networks.
    Brodzicki A; Piekarski M; Jaworek-Korjakowska J
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local minima in hierarchical structures of complex-valued neural networks.
    Nitta T
    Neural Netw; 2013 Jul; 43():1-7. PubMed ID: 23466503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
    Petersen P; Voigtlaender F
    Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training a Two-Layer ReLU Network Analytically.
    Barbu A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss surface of XOR artificial neural networks.
    Mehta D; Zhao X; Bernal EA; Wales DJ
    Phys Rev E; 2018 May; 97(5-1):052307. PubMed ID: 29906831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion dynamics of learning in deep neural networks.
    Chen G; Qu CK; Gong P
    Neural Netw; 2022 May; 149():18-28. PubMed ID: 35182851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization.
    Han Z; Yu S; Lin SB; Zhou DX
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1853-1868. PubMed ID: 33079656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast saddle-point dynamical system approach to robust deep learning.
    Esfandiari Y; Balu A; Ebrahimi K; Vaidya U; Elia N; Sarkar S
    Neural Netw; 2021 Jul; 139():33-44. PubMed ID: 33677377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximation of smooth functionals using deep ReLU networks.
    Song L; Liu Y; Fan J; Zhou DX
    Neural Netw; 2023 Sep; 166():424-436. PubMed ID: 37549610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piecewise convexity of artificial neural networks.
    Rister B; Rubin DL
    Neural Netw; 2017 Oct; 94():34-45. PubMed ID: 28732233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local minima and plateaus in hierarchical structures of multilayer perceptrons.
    Fukumizu K; Amari S
    Neural Netw; 2000 Apr; 13(3):317-27. PubMed ID: 10937965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved weight initialization for deep and narrow feedforward neural network.
    Lee H; Kim Y; Yang SY; Choi H
    Neural Netw; 2024 Aug; 176():106362. PubMed ID: 38733795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.