These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34454266)

  • 21. Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording.
    Cho-Hisamoto Y; Kojima K; Brown EC; Matsuzaki N; Asano E
    Clin Neurophysiol; 2015 Jan; 126(1):17-26. PubMed ID: 24815577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing suppression of saccade-related transients along the human visual hierarchy.
    Golan T; Davidesco I; Meshulam M; Groppe DM; Mégevand P; Yeagle EM; Goldfinger MS; Harel M; Melloni L; Schroeder CE; Deouell LY; Mehta AD; Malach R
    Elife; 2017 Aug; 6():. PubMed ID: 28850030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upright face-preferential high-gamma responses in lower-order visual areas: evidence from intracranial recordings in children.
    Matsuzaki N; Schwarzlose RF; Nishida M; Ofen N; Asano E
    Neuroimage; 2015 Apr; 109():249-59. PubMed ID: 25579446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for visual naming based on spatiotemporal dynamics of ECoG high-gamma modulation.
    Arya R; Babajani-Feremi A; Byars AW; Vannest J; Greiner HM; Wheless JW; Mangano FT; Holland KD
    Epilepsy Behav; 2019 Oct; 99():106455. PubMed ID: 31419636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation.
    Ervin B; Buroker J; Rozhkov L; Holloway T; Horn PS; Scholle C; Byars AW; Mangano FT; Leach JL; Greiner HM; Holland KD; Arya R
    Clin Neurophysiol; 2020 Dec; 131(12):2851-2860. PubMed ID: 33137575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporally and functionally distinct large-scale brain network dynamics supporting task switching.
    Mitsuhashi T; Sonoda M; Firestone E; Sakakura K; Jeong JW; Luat AF; Sood S; Asano E
    Neuroimage; 2022 Jul; 254():119126. PubMed ID: 35331870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of Expressive Language Cortex in a 2-Year-Old Child Using High-Gamma Electrocorticography.
    Babajani-Feremi A; Fulton SP; Holder CM; Choudhri AF; Boop FA; Wheless JW
    J Child Neurol; 2019 Nov; 34(13):837-841. PubMed ID: 31339411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saccadic Suppression Is Embedded Within Extended Oscillatory Modulation of Sensitivity.
    Benedetto A; Morrone MC
    J Neurosci; 2017 Mar; 37(13):3661-3670. PubMed ID: 28270573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements.
    Supèr H; van der Togt C; Spekreijse H; Lamme VA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3230-5. PubMed ID: 14970334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.
    Potes C; Brunner P; Gunduz A; Knight RT; Schalk G
    Neuroimage; 2014 Aug; 97():188-95. PubMed ID: 24768933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey.
    Keller EL; Edelman JA
    J Neurophysiol; 1994 Dec; 72(6):2754-70. PubMed ID: 7897487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback.
    Herdman AT; Ryan JD
    J Cogn Neurosci; 2007 Mar; 19(3):420-32. PubMed ID: 17335391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study.
    Nourski KV; Steinschneider M; Rhone AE; Kawasaki H; Howard MA; Banks MI
    Neuroimage; 2018 Dec; 183():412-424. PubMed ID: 30114466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1.
    Vallines I; Greenlee MW
    J Neurosci; 2006 May; 26(22):5965-9. PubMed ID: 16738238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human visual cortical gamma reflects natural image structure.
    Brunet NM; Fries P
    Neuroimage; 2019 Oct; 200():635-643. PubMed ID: 31247299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.