These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 34454386)
1. Nile Red staining for detecting microplastics in biota: Preliminary evidence. Nalbone L; Panebianco A; Giarratana F; Russell M Mar Pollut Bull; 2021 Nov; 172():112888. PubMed ID: 34454386 [TBL] [Abstract][Full Text] [Related]
2. Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Konde S; Ornik J; Prume JA; Taiber J; Koch M Mar Pollut Bull; 2020 Oct; 159():111475. PubMed ID: 32692678 [TBL] [Abstract][Full Text] [Related]
3. Counterstaining to Separate Nile Red-Stained Microplastic Particles from Terrestrial Invertebrate Biomass. Maxwell S H; Melinda K F; Matthew G Environ Sci Technol; 2020 May; 54(9):5580-5588. PubMed ID: 32298090 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive assessment of factors influencing Nile red staining: Eliciting solutions for efficient microplastics analysis. Wang C; Jiang L; Liu R; He M; Cui X; Wang C Mar Pollut Bull; 2021 Oct; 171():112698. PubMed ID: 34245991 [TBL] [Abstract][Full Text] [Related]
5. Identification and quantification of microplastics using Nile Red staining. Shim WJ; Song YK; Hong SH; Jang M Mar Pollut Bull; 2016 Dec; 113(1-2):469-476. PubMed ID: 28340965 [TBL] [Abstract][Full Text] [Related]
6. Preparation of biological samples for microplastic identification by Nile Red. Prata JC; Sequeira IF; Monteiro SS; Silva ALP; da Costa JP; Dias-Pereira P; Fernandes AJS; da Costa FM; Duarte AC; Rocha-Santos T Sci Total Environ; 2021 Aug; 783():147065. PubMed ID: 34088143 [TBL] [Abstract][Full Text] [Related]
7. Nile red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics. Hengstmann E; Fischer EK Environ Monit Assess; 2019 Sep; 191(10):612. PubMed ID: 31489505 [TBL] [Abstract][Full Text] [Related]
8. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Lv L; Qu J; Yu Z; Chen D; Zhou C; Hong P; Sun S; Li C Environ Pollut; 2019 Dec; 255(Pt 2):113283. PubMed ID: 31580990 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region. Bakir A; Desender M; Wilkinson T; Van Hoytema N; Amos R; Airahui S; Graham J; Maes T Mar Pollut Bull; 2020 Nov; 160():111572. PubMed ID: 32920260 [TBL] [Abstract][Full Text] [Related]
10. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Erni-Cassola G; Gibson MI; Thompson RC; Christie-Oleza JA Environ Sci Technol; 2017 Dec; 51(23):13641-13648. PubMed ID: 29112813 [TBL] [Abstract][Full Text] [Related]
11. Towards reliable data: Validation of a machine learning-based approach for microplastics analysis in marine organisms using Nile red staining. Meyers N; Everaert G; Hostens K; Schmidt N; Herzke D; Fuda JL; Janssen CR; De Witte B Mar Pollut Bull; 2024 Oct; 207():116804. PubMed ID: 39241371 [TBL] [Abstract][Full Text] [Related]
12. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Meyers N; Catarino AI; Declercq AM; Brenan A; Devriese L; Vandegehuchte M; De Witte B; Janssen C; Everaert G Sci Total Environ; 2022 Jun; 823():153441. PubMed ID: 35124051 [TBL] [Abstract][Full Text] [Related]
13. Nile Red lifetime reveals microplastic identity. Sancataldo G; Avellone G; Vetri V Environ Sci Process Impacts; 2020 Nov; 22(11):2266-2275. PubMed ID: 33064112 [TBL] [Abstract][Full Text] [Related]
14. Microplastics in marine biota: A review. Ugwu K; Herrera A; Gómez M Mar Pollut Bull; 2021 Aug; 169():112540. PubMed ID: 34087664 [TBL] [Abstract][Full Text] [Related]
15. Improving the efficiency of post-digestion method in extracting microplastics from gastrointestinal tract and gills of fish. Jaafar N; Musa SM; Azfaralariff A; Mohamed M; Yusoff AH; Lazim AM Chemosphere; 2020 Dec; 260():127649. PubMed ID: 32688323 [TBL] [Abstract][Full Text] [Related]
16. Material-Specific Determination Based on Microscopic Observation of Single Microplastic Particles Stained with Fluorescent Dyes. Aoki H Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591080 [TBL] [Abstract][Full Text] [Related]
17. Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Shruti VC; Pérez-Guevara F; Roy PD; Kutralam-Muniasamy G J Hazard Mater; 2022 Feb; 423(Pt B):127171. PubMed ID: 34537648 [TBL] [Abstract][Full Text] [Related]
18. Labeling Microplastics with Fluorescent Dyes for Detection, Recovery, and Degradation Experiments. Gao Z; Wontor K; Cizdziel JV Molecules; 2022 Nov; 27(21):. PubMed ID: 36364240 [TBL] [Abstract][Full Text] [Related]
19. Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: A case study of mussels from coastal China. Liu Y; Li R; Yu J; Ni F; Sheng Y; Scircle A; Cizdziel JV; Zhou Y Environ Pollut; 2021 Mar; 272():115946. PubMed ID: 33190986 [TBL] [Abstract][Full Text] [Related]
20. Comparative profiling and exposure assessment of microplastics in differently sized Manila clams from South Korea by μFTIR and Nile Red staining. de Guzman MK; Andjelković M; Jovanović V; Jung J; Kim J; Dailey LA; Rajković A; De Meulenaer B; Ćirković Veličković T Mar Pollut Bull; 2022 Aug; 181():113846. PubMed ID: 35763988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]