BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34454928)

  • 1. Acetyl-CoA carboxylase 2 inhibition reduces skeletal muscle bioactive lipid content and attenuates progression of type 2 diabetes in Zucker diabetic fatty rats.
    Takagi H; Ikehara T; Hashimoto K; Tanimoto K; Shimazaki A; Kashiwagi Y; Sakamoto S; Yukioka H
    Eur J Pharmacol; 2021 Nov; 910():174451. PubMed ID: 34454928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Acetyl-CoA Carboxylase 2 Selective Inhibitor Improves Whole-Body Insulin Resistance and Hyperglycemia in Diabetic Mice through Target-Dependent Pathways.
    Takagi H; Tanimoto K; Shimazaki A; Tonomura Y; Momosaki S; Sakamoto S; Abe K; Notoya M; Yukioka H
    J Pharmacol Exp Ther; 2020 Mar; 372(3):256-263. PubMed ID: 31900320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice.
    Takagi H; Ikehara T; Kashiwagi Y; Hashimoto K; Nanchi I; Shimazaki A; Nambu H; Yukioka H
    Endocrinology; 2018 Aug; 159(8):3007-3019. PubMed ID: 29931154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia.
    Smith AC; Mullen KL; Junkin KA; Nickerson J; Chabowski A; Bonen A; Dyck DJ
    Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E172-81. PubMed ID: 17374701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats.
    Mullen KL; Pritchard J; Ritchie I; Snook LA; Chabowski A; Bonen A; Wright D; Dyck DJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R243-51. PubMed ID: 19073900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice.
    O'Neill HM; Lally JS; Galic S; Thomas M; Azizi PD; Fullerton MD; Smith BK; Pulinilkunnil T; Chen Z; Samaan MC; Jorgensen SB; Dyck JR; Holloway GP; Hawke TJ; van Denderen BJ; Kemp BE; Steinberg GR
    Diabetologia; 2014 Aug; 57(8):1693-702. PubMed ID: 24913514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice.
    Glund S; Schoelch C; Thomas L; Niessen HG; Stiller D; Roth GJ; Neubauer H
    Diabetologia; 2012 Jul; 55(7):2044-53. PubMed ID: 22532389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.
    Lee JS; Pinnamaneni SK; Eo SJ; Cho IH; Pyo JH; Kim CK; Sinclair AJ; Febbraio MA; Watt MJ
    J Appl Physiol (1985); 2006 May; 100(5):1467-74. PubMed ID: 16357064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats.
    Harriman G; Greenwood J; Bhat S; Huang X; Wang R; Paul D; Tong L; Saha AK; Westlin WF; Kapeller R; Harwood HJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1796-805. PubMed ID: 26976583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats.
    Beha A; Juretschke HP; Kuhlmann J; Neumann-Haefelin C; Belz U; Gerl M; Kramer W; Roden M; Herling AW
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E989-97. PubMed ID: 16380389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats: implications for a role of stearoyl-CoA desaturase 1 in insulin resistance.
    Voss MD; Beha A; Tennagels N; Tschank G; Herling AW; Quint M; Gerl M; Metz-Weidmann C; Haun G; Korn M
    Diabetologia; 2005 Dec; 48(12):2622-30. PubMed ID: 16284748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance.
    Dube JJ; Bhatt BA; Dedousis N; Bonen A; O'Doherty RM
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R642-50. PubMed ID: 17491114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats.
    Holloway GP; Han XX; Jain SS; Bonen A; Chabowski A
    Diabetologia; 2014 Apr; 57(4):832-40. PubMed ID: 24458200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.
    Bonen A; Holloway GP; Tandon NN; Han XX; McFarlan J; Glatz JF; Luiken JJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1202-12. PubMed ID: 19675275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of skeletal muscle leptin response does not precede the exercise-induced recovery of insulin-stimulated glucose uptake in high-fat-fed rats.
    Ritchie IR; Gulli RA; Stefanyk LE; Harasim E; Chabowski A; Dyck DJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R492-500. PubMed ID: 21084675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals.
    Harwood HJ; Petras SF; Shelly LD; Zaccaro LM; Perry DA; Makowski MR; Hargrove DM; Martin KA; Tracey WR; Chapman JG; Magee WP; Dalvie DK; Soliman VF; Martin WH; Mularski CJ; Eisenbeis SA
    J Biol Chem; 2003 Sep; 278(39):37099-111. PubMed ID: 12842871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes.
    De Feyter HM; Lenaers E; Houten SM; Schrauwen P; Hesselink MK; Wanders RJ; Nicolay K; Prompers JJ
    FASEB J; 2008 Nov; 22(11):3947-55. PubMed ID: 18653763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.
    Savage DB; Choi CS; Samuel VT; Liu ZX; Zhang D; Wang A; Zhang XM; Cline GW; Yu XX; Geisler JG; Bhanot S; Monia BP; Shulman GI
    J Clin Invest; 2006 Mar; 116(3):817-24. PubMed ID: 16485039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.